
TLP: WHITE

A WILD KOBALOS
APPEARS
Tricksy Linux malware goes after HPCs

Marc-Etienne M.Léveillé
Ignacio Sanmillan

ESET Research White Paper // January 2021

TABLE OF CONTENTS
1. Executive summary . 4

1.1 Key findings . 4

2. Introduction . 5

3. Operation . . 6

3.1 Victimology . 6

3.2 Initial compromise vector 7

3.3 High performance computer networks under attack 7

3.4 Overview of Kobalos 7

4. Kobalos technical analysis 10

4.1 Obfuscation . . 10

4.2 Configuration . 13

4.3 Deployment and persistence 14

4.4 Interacting with the backdoor 14

4.5 Malware operation 19

5. OpenSSH credential stealer. 24

5.1 An evolving malware family 25

6. Conclusion . 26

7. Appendix – Inlined functions in Kobalos 27

8. Indicators of compromise 28

8.1 ESET detection names 28

8.2 Samples . . 28

8.3 Keys . 28

8.4 YARA rules . 29

9. MITRE ATT&CK techniques 30

LIST OF FIGURES
Figure 1 Industry and region of compromised organizations 6

Figure 2 Overview of Kobalos features and ways to access them 9

Figure 3 Control flow graph of Kobalos 10

Figure 4 C code showing what the source of Kobalos may look like after control
flow flattening is performed 11

Figure 5 Kobalos avoids creating core dumps on crash and will ignore most signals 12

Figure 6 Example configuration seen in a Kobalos sample embedded in sshd 13

Figure 7 Call to kobalos function from trojanized OpenSSH main function
after a new TCP connection is accepted 14

Figure 8 Comparing source port with 55201 15

Figure 9 Comparing source port against the list of 16 ports 15

Figure 10 Authentication taking place after 320 bytes are received 16

Figure 11 Loading of the RSA-512 public key 16

Figure 12 Information sent from the compromised host to the operator 18

Figure 13 Sequence diagram summarizing Kobalos network protocols 18

Figure 14 Kobalos used as proxy 19

Figure 15 Operator of Kobalos reaching out to bots reporting to a C&C server 22

Figure 16 Packets related to managing the C&C server forwarded
to the subprocess via TCP 22

Figure 17 Commands 0x07 and 0x09 do not perform any operation 23

Figure 18 Encrypting and writing SSH credentials to a f ile 24

Figure 19 Malware sending credentials over UDP 25

Figure 20 Example configuration using a f ile to write stolen credentials 25

LIST OF TABLES
Table 1 Structure of Kobalos static configuration blob 13

Table 2 Structure of authentication packet (encrypted with the RSA private key) 16

Table 3 Structure of authentication reply from Kobalos
(encrypted with the RSA public key) 17

Table 4 Kobalos packet structure 17

Table 5 Commands to use Kobalos as a proxy 20

Table 6 Commands understood by Kobalos for reading and writing f iles 20

Table 7 Commands for creating and managing pseudo-terminals 21

Table 8 Commands for managing a Kobalos C&C server 22

Table 9 Other commands understood by Kobalos 23

A wild Kobalos appears Tricksy Linux malware goes after HPCs4 TLP: WHITE

1. EXECUTIVE SUMMARY
ESET Research has analyzed Kobalos, previously unknown and complex multiplatform malware
targeting Linux, FreeBSD and Solaris systems. Given that the victims of this threat are mostly high-profile
organizations, it seems almost certain this malware is deployed against chosen targets rather than
opportunistically. When deployed, this malware gives access to the file system of the compromised host
and enables access to a remote terminal, giving the attackers the ability to run arbitrary commands.

The network capabilities of Kobalos make this malware quite distinctive. It supports acting both as a passive
implant and as a bot actively connecting to its C&C server. Interestingly, these C&C servers are themselves
compromised with Kobalos; the code for running such servers is present in all Kobalos samples.

By performing an internet-wide scan, ESET Research was able to identify and notify victims of this threat.

It is unclear how old this malware is, but the first known activity was confirmed by a victim
who was compromised in late 2019. The group operating Kobalos remained active throughout 2020.

The Linux threat landscape continues to evolve, and at times, malware authors invest a considerable
amount of resources into their tradecraft. Kobalos is one of these cases.

1.1 Key findings
• Kobalos is a multiplatform backdoor that works on Linux, FreeBSD and Solaris. There are also artifacts

indicating that variants of this malware may exist for AIX and even Windows.

• The targets of Kobalos are high profile and include high-performance computers, servers in academia,
an endpoint security vendor, and a large internet service provider. It was deployed in servers located
in Europe, North America, and Asia.

• Kobalos uses a complex obfuscation mechanism that makes its analysis challenging.

• Any Kobalos-compromised server can be turned into a C&C server for other hosts compromised
by Kobalos. The code is embedded into the malware and can be activated by the operator at any time.

• Most hosts compromised by Kobalos that we investigated also had an OpenSSH credential stealer
installed. This may explain how Kobalos propagates.

• The intent of the authors of this malware is still unknown. We have not found any clues to indicate
whether they steal confidential information, pursue monetary gain, or are after something else.
No other malware was found on compromised systems except the SSH credential stealer.

A wild Kobalos appears Tricksy Linux malware goes after HPCs5 TLP: WHITE

2. INTRODUCTION
If you have been following ESET Research’s work over the past few years, you may have noticed we like
finding and documenting server-side malware targeting Linux and other less commonly targeted operating
systems. One of our first such reports was Operation Windigo, which documents multiple malware families
working together to perform internet traffic redirection, send spam, and perform other malicious activity.
The core malware of Operation Windigo is Ebury, an OpenSSH backdoor and credential stealer. Ebury
is able to compromise the SSH client and server without actually modifying the OpenSSH executable files;
it modifies a library loaded by them and patches functions to enable Ebury and steal credentials when
the backdoor is loaded. This is not easily done, but the Ebury authors are able to do this in a reliable way.

Since our paper on Operation Windigo, we discovered and documented multiple other Linux threats
such as Mumblehard, Moose, Shishiga and tens of backdoors for OpenSSH in a paper we titled The dark side
of the ForSSHe.

Up until now, when it comes to analysis, we have not found any Linux malware as challenging as Ebury.
But this time there’s a different twist: unlike Ebury, Kobalos’s operations seem not to be at a large scale.
The number of machines compromised by Kobalos are more in the tens than, as in the case of Linux/Ebury,
in the tens of thousands.

This paper covers our full technical analysis of Kobalos, the targets of this group of attackers, and indicators
of compromise to help potential victims uncover and remediate it.

https://www.welivesecurity.com/wp-content/uploads/2014/03/operation_windigo.pdf
https://www.welivesecurity.com/wp-content/uploads/2015/04/mumblehard.pdf
https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
https://www.welivesecurity.com/2017/04/25/linux-shishiga-malware-using-lua-scripts/
https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-The_Dark_Side_of_the_ForSSHe.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-The_Dark_Side_of_the_ForSSHe.pdf

A wild Kobalos appears Tricksy Linux malware goes after HPCs6 TLP: WHITE

3. OPERATION

3.1 Victimology
Following our analysis, ESET conducted internet-wide scans in an effort to find victims of Kobalos.
Our fingerprint leverages a specific behavior of the backdoor that occurs when a TCP connection
is established with a compromised host from a specific source port.

One of the surprising things about this threat, given its sophistication, is the very limited number
of victims we could find. Targets, however, don’t seem to be random and tend to be high-performance
computers (HPC) and servers that are part of academic and research networks. One of the HPCs
has no less than 512GB of RAM and almost a petabyte of storage. We also uncovered other high-profile
victims such as an endpoint security software vendor (not ourselves!).

Figure 1 is a map of the regions and industries of the victims we found.

Europe

University networks

High performance
computing

Marketing agency

Hosting

Asia

Large Internet
service provider

North America

Endpoint security
software vendor

Personal servers

Government

Figure 1 // Industry and region of compromised organizations

Some organizations had multiple servers compromised.

We notified all victims we identified and worked with them to remediate. We would like to thank
all victims who replied and shared information that helped us in this research.

A wild Kobalos appears Tricksy Linux malware goes after HPCs7 TLP: WHITE

3.2 Initial compromise vector
We do not have firsthand knowledge of how systems were compromised to gain administrative access
to install the Kobalos backdoor on them. We can only speculate based on the forensic artifacts we collected
while assisting victims.

On compromised machines whose system administrators were able to investigate further, we discovered
that an SSH credential stealer was present in the form of a trojanized OpenSSH client. The /usr/bin/ssh
file was replaced with a modified executable that recorded username, password and target hostname, and
wrote them to an encrypted file. Thus, we believe that credential stealing could be one of the ways Kobalos
propagates. It could also explain why many academic networks were compromised; if one of those system’s
SSH clients was used by students or researchers from multiple universities, it could have leaked credentials
to all these third-party systems.

Another possible entry point could be exploitation of a known vulnerability. Some of the compromised
machines ran old, unsupported, or unpatched operating systems and software. While the use
of an undisclosed vulnerability isn’t impossible, a known exploit is more likely in this situation.

3.3 High performance computer networks under attack
ESET shared information with organizations, such as the CERN Computer Security Team, who played
an instrumental role in handling the incidents at research and academic sites. What these organizations
could confirm is that between the end of 2019 and mid-2020, a wave of three different attacks targeted
the HPC community. Some have been reported publicly.

After many months of investigations, it remains unclear whether these three campaigns are connected
or a surprising coincidence. On one hand, operations seem to leverage different tactics, techniques (TTPs)
and levels of sophistication. On the other hand, it seems odd that there is an overlap in some of the
IP addresses used to launch the different attacks.

1. The earliest campaign used Kobalos, the malware described in this research.

2. The second campaign appears to have focused on cryptocurrency mining by leveraging
a totally different toolset.

3. The third campaign was the most widespread, yet no payload was identified.

Partial indicators of compromise for the second and third attacks were published by the European
Grid Infrastructure Computer Security Incident Response Team (EGI CSIRT) as incident #EGI20200421
and #EGI2020512 respectively.

It is not clear why the HPC community is overly represented among the victims of these attacks.
HPC centers are obviously interesting targets but typically less easily accessible than other academic servers.
Through a fully community-based, distributed incident response process, CERN and other incident response
teams involved observed a number of legacy designs and suboptimal security practices that played a key
role in enabling the attackers to spread their attacks. Additionally, most HPC victims were poorly prepared
for forensics, in particular with regard to traceability.

3.4 Overview of Kobalos
Kobalos has multiple features to access the compromised systems and hide the tracks of its usage.

Access to the compromised system
First, the Kobalos malware contains generic commands to read from and write to the file system and spawn
a terminal to execute arbitrary commands. Unfortunately, it doesn’t contain any specific payload that could
indicate the intentions of its authors. The operators likely open a shell through the terminal and perform
whatever commands they need to.

https://www.cadosecurity.com/post/recent-attacks-against-supercomputers
https://csirt.egi.eu/attacks-on-multiple-hpc-sites/
https://csirt.egi.eu/attacks-on-multiple-hpc-sites/

A wild Kobalos appears Tricksy Linux malware goes after HPCs8 TLP: WHITE

Reachability
Second, there are numerous functionalities related to establishing network connectivity between
the operators and the running Kobalos malware. It supports multiple ways to make itself reachable
from the outside:

1. By opening a TCP port and waiting for an incoming connection (sometimes called a passive backdoor).

2. By connecting to another instance of Kobalos configured to run as C&C server.

3. By waiting for connections to an already running, legitimate service but coming from a specific
TCP source port.

That last option requires replacing the running service with one containing the Kobalos code.
In all cases we’ve seen for this method, they have chosen to modify the running OpenSSH server.
The sshd file was completely replaced, so the malware is persistent across service or system restarts.

Authentication and network encryption
Third, triggering the backdoor requires its clients to authenticate. Clients must possess an RSA-512 private
key and a password. Once both are validated, Kobalos generates and encrypts two 16-byte keys with the
RSA-512 public key and sends them to the attackers. These two keys are used to RC4 encrypt subsequent
inbound and outbound traffic.

Alternate port
Fourth, during the authentication phase, the operator can choose to continue the communication
on another TCP connection. When asked, Kobalos will start listening on the requested TCP port and the rest
of the communication will use that connection. Data going through this channel is encrypted using
the RC4 keys previously exchanged during authentication.

Proxying to other compromised machines
Fifth, Kobalos can also be used as a proxy to connect other servers compromised with Kobalos. It is not
a generic TCP proxy; it expects communication to be encapsulated in packets specific to this threat. It also
supports the alternate port option mentioned above: a command can be sent to the proxy to “switch”
the connection to a new TCP port.

Proxies can be chained, which means the operators can use multiple Kobalos-compromised machines
to reach their targets.

A wild Kobalos appears Tricksy Linux malware goes after HPCs9 TLP: WHITE

Putting it all together
Figure 2 provides an overview of the different features of Kobalos.

Server B uses Server A
as C&C server.

Operator

sshd

Kobalos backdoor

File
system

>_

Terminal
sshd

Kobalos backdoor

Kobalos backdoor

Compromised
server A

A
Compromised

server B

B

Compromised
server C

C

Direct connection
to the backdoor.

Scenario 1 Scenario 2

Server A is used to proxy
connection to Server C.

Scenario 3

2

1

3

Figure 2 // Overview of Kobalos features and ways to access them

Figure 2 also shows different possible scenarios where the operators try to reach compromised servers.
The first is a simple direct connection to a compromised server to access its resources. In the example above,
the backdoor is running inside a compromised OpenSSH server process and expects the connection to have
a source port. Communication with the backdoor requires the right TCP source port from the operator.

The second one is perhaps the trickiest, but also one of the most unique features of Kobalos. Its operators
have the ability to start a C&C server from any of the servers running the malware. It doesn’t require
additional code: everything is in the malware already. Once started, it will manage a list of connected bots
giving the operator the ability to connect to any of them. Authentication is still required on the final node
and end-to-end encryption is enforced using the exchanged RC4 keys. For this scheme to work, the Kobalos
malware sample running on Server B needs to have in its configuration the IP address and port of the C&C
server running on Server A. From the perspective of Server B, it will only see traffic to and from Server A,
hiding the IP address of the operator.

In the third scenario, Server A is used as a proxy to connect to Server C. Again, authentication
and end-to-end encryption is enforced. The proxying functionality allows the operator to set the source
port of the connection from Server A to Server C. This means it can be used to connect to Kobalos instances
that expect a specific source port when connecting.

A wild Kobalos appears Tricksy Linux malware goes after HPCs10 TLP: WHITE

4. KOBALOS TECHNICAL ANALYSIS
The first sample of Kobalos we analyzed was a trojanized OpenSSH server. The size of the Kobalos
malicious code and data is quite small: about 25 kB for x86-64 samples. One of the things that makes
it special is that all of Kobalos’s code is bundled into a single function. There is also only a single call
to that function from the legitimate OpenSSH code.

Kobalos is a complex piece of malware in which, it is clear, its developers invested a considerable amount
of resources. Its authors implemented quite a lot of features and also took the time to implement
what seems to be custom obfuscation.

4.1 Obfuscation

Exceptional control flow flattening
Just because it fits into a single function doesn’t mean control flow is linear; Kobalos recursively calls
that function to perform whatever subtask it needs to do. Figure 3 shows the complex control flow graph
of the Kobalos function.

Figure 3 // Control flow graph of Kobalos

The first parameter to the function is the action to perform. There are actually 37 actions understood
by the malware. They are listed in “Appendix – Inlined functions in Kobalos” to help the analysis of existing
and possible future versions of this malware.

In addition to these 37 actions, the function also serves as a signal handler for SIGCHLD to let child process
terminate gracefully and SIGALRM to handle connection timeout.

From the point of view of the source code of the malware, it would be like compiling the following C code.
Part of this transformation could be automated with the function inlining capability of the compiler, but still
requires manual work or custom tooling to assign numerical identifier to each function and handle the same
number of arguments in all functions. Figure 4 shows what the C source code could look like before
and after this obfuscation is applied.

A wild Kobalos appears Tricksy Linux malware goes after HPCs11 TLP: WHITE

Before After

int add(int a, int b) {
 return a + b;
}

int mul(int a, int b) {
 return a * b;
}

int square(int a) {
 return mul(a, a);
}

int get_magic(void) {
 return add(square(59), 56);
}

int main(void) {
 return get_magic();
}

int f(int action, int a, int b) {
 int ret;
 switch(action) {
 case 1000:
 ret = a + b;
 break;
 case 1001:
 ret = a * b;
 break;
 case 1002:
 ret = f(1001, a, a);
 break;
 case 1003:
 ret = f(1002, 59, 0);
 ret = f(1000, ret, 56);
 break;
 }
 return ret;
}

int main(void) {
 return f(1003, 0, 0);
}

Figure 4 // C code showing what the source of Kobalos may look like after control flow flattening is performed

Encrypted strings
Kobalos doesn’t have any readable plain text string in its code or its data. It only uses a few small
strings, which are encrypted using RC4. They are decrypted right after the initial communication
but before the authentication. They key is the same for all samples we analyzed
(AE 0E 05 09 0F 3A C2 B5 0B 1B C6 E9 1D 2F E3 CE).

The decrypted strings are:

1. %s %s

2. /dev/ptmx
3. ptem

4. ldterm
5. ttcompat

6. /dev/tty
7. %s
8. %d
9. /
10. \
11. %d.%d
12. win3.11
13. win95
14. winNT
15. win??
16. \\.\pipe\2
17. %s %s.%s
18. /dev/ptc

A wild Kobalos appears Tricksy Linux malware goes after HPCs12 TLP: WHITE

Only the strings in bold (1 and 6–9) are used by the Kobalos samples we have analyzed. None of the others
are referenced; however, they may be used by some other variants. Specifically:

• Strings 10 and 12–16 (in blue) seems to be specific to Windows
• String 18 (in pink) is the path to the pseudo-terminal device driver on AIX
• Strings 3–5 (in orange) are used by pseudo-terminal system calls on Solaris

We cannot exclude an attempt to fool researchers into thinking there are versions for additional operating
systems. Considering we confirmed three operating systems are supported, it wouldn’t be surprising
if more were. On the other hand, Windows 3.11 and Windows 95 are more than 25 years old. Do variants
of this malware really exist for these legacy operating systems?

Anti-forensics

Once authentication is done, some anti-forensic techniques will be enforced on the backdoor’s process,
as shown in Figure 5. They are:

• Set RLIMIT_CORE to zero to prevent core-dump generation if the process crashes
• Ignore most signals to make it more difficult to interrupt the process.

Figure 5 // Kobalos avoids creating core dumps on crash and will ignore most signals

It’s important to note that setting RLIMIT_CORE will not prevent the process from being dumped manually
by, for example, gdb’s gcore. This limit is used by the kernel to determine the maximum size of a memory
dump in the event the process crashes.

A wild Kobalos appears Tricksy Linux malware goes after HPCs13 TLP: WHITE

Timestomping

Analysis of the file system of compromised servers showed that after either is installed, timestamps
of replaced files, such as ssh to add the credential stealer or sshd to deploy Kobalos, are tampered
with to reduce suspicion.

4.2 Configuration
Kobalos has a static configuration that enables or disables functions of the malware. Table 1 lists the fields
we identified as part of the configuration and Figure 6 shows what it looks like in an actual sample.

Table 1 Structure of Kobalos static configuration blob

Size (bytes) Description

2
Possibly a version number. It is reported upon successful authentication. All samples we have seen
have value 0xB03 (assuming it is transmitted big-endian, like all other Kobalos communications).

320 Public RSA key modulus. Encoded in a specific binary form.

2
TCP port to listen to. If set to zero, Kobalos will not listen to any port and use other methods to wait
for a connection to the backdoor.

2
Timeout minimum in minutes for incoming connection or connection to a C&C server. If not set,
the timeout defaults to one day.

2
Timeout range in minutes. The final timeout is a random number of minutes between the minimum
(previous value) and the minimum plus the range (this value).

4
IP address of the C&C server to connect to in order to process commands. Set to zero if passively
waiting for a connection instead.

2 x 16 TCP ports to try when connecting to C&C server.

16 MD5 hash of the password required for authentication.

Figure 6 // Example configuration seen in a Kobalos sample embedded in sshd

A wild Kobalos appears Tricksy Linux malware goes after HPCs14 TLP: WHITE

Part of this configuration differs when Kobalos is running inside sshd or as a stand-alone executable.
The latter requires either a remote C&C server address (remote_c2_addr) or a port to listen
on (listen_port).

4.3 Deployment and persistence
When Kobalos is deployed to run as part of the OpenSSH server, the sshd file must be recompiled
to include the malicious code. We compared the version of OpenSSH that was trojanized and the version
of OpenSSH that should be installed on the system, such as the one from the package manager. It seems
that the operators compile Kobalos using the proper OpenSSH source, the one that was already installed.
This suggests that operators possibly compile the malicious OpenSSH executable on the victim’s machine
before replacing the original. This is likely done in order to enable persistence while preventing mismatching
version anomalies, such as library incompatibilities.

It’s worth noting that replacing sshd requires root privileges. However, there exist stand-alone variants
that either connect to a C&C server or listen on a TCP port. Those variants do not require administrative
privileges to run. However, file system access and commands will be limited to the current
user’s access levels.

4.4 Interacting with the backdoor

Connecting to the backdoor
One of the notable features of Kobalos is the malleability of the ways in which the link between
its operators and the compromised host can be established. There are three possible ways it can be done:

1. Listen on a given TCP port (passive mode).

2. Connect to a C&C server (active mode) and wait for operator to connect through the C&C server.

3. Replace an existing service that listens on a TCP port and wait for connections from specific
TCP source ports.

Although it would be possible to activate multiple methods via the static configuration of the malware,
only one of them is activated per sample we have analyzed.

The last method described requires modifying a running daemon. The trojanized version calls Kobalos’s
code each time a new TCP connection is accepted, as seen in Figure 7. Kobalos can decide to take over
from there if the connection is from a specific TCP source port. In the case of such a port match, the function
never returns and the subprocess will exit when the connection is closed. Otherwise, it does nothing
and returns to the legitimate service’s code so it still functions properly.

Figure 7 // Call to kobalos function from trojanized OpenSSH main function after a new TCP connection is accepted

A wild Kobalos appears Tricksy Linux malware goes after HPCs15 TLP: WHITE

We have only seen the OpenSSH server being abused with this method, and this is the most popular method
we’ve seen deployed. However, we may be biased because it was also the method we could fingerprint
in our internet-wide scans.

As seen in Figure 8, the TCP source port expected by Kobalos is 55201.

Figure 8 // Comparing source port with 55201

There is also an additional method implemented for filtering incoming TCP connections in Kobalos,
which instead compares the source port against a list of 16 ports, as seen in Figure 9.

Figure 9 // Comparing source port against the list of 16 ports

The list of ports is

20

21

53

230

567

982

1821

1912

2734

5392

11568

19678

22392

33921

44983

55201

A wild Kobalos appears Tricksy Linux malware goes after HPCs16 TLP: WHITE

However, we have not seen this filter ever used in any of the samples we analyzed. It may have been used
in a previous version of this malware.

Authentication
Once a link is established, an authentication process takes place. A private RSA key and a 32-byte password
are required to go any further. An initial 320-byte packet, whose structure is outlined in Table 2, is sent
by the Kobalos client to the backdoored server.

Table 2 Structure of authentication packet (encrypted with the RSA private key)

Size (bytes) Description Value

4 Magic 0x7FFF000A

2 Port to bind
if 0x0000: Kobalos picks a random port

if 0xFFFF: use existing TCP connection

1
Communication
channel identifier

Seems to always be set to 0xFF

1
Communication
channel identifier

Seems to always be set to 0xFF

32 Password
The password whose value matches the MD5 hash
in the static configuration.

280 Padding

The first 64 bytes of the packet are decrypted using the RSA-512 public key modulus provided
in the configuration and the 0x10001 exponent (see Figure 11). Then, as seen in Figure 10, the 32-byte
password is MD5-hashed and compared to the digest found in the static configuration.

Figure 10 // Authentication taking place after 320 bytes are received

Figure 11 // Loading of the RSA-512 public key

A wild Kobalos appears Tricksy Linux malware goes after HPCs17 TLP: WHITE

Kobalos will use the public RSA key to encrypt a set of RC4 keys to use for the rest of the communication:
one for inbound traffic and one for outbound traffic. Those encrypted keys are sent back in the reply.
Table 3 outlines the structure of the reply from Kobalos.

The structure of the reply from Kobalos is the following:

Table 3 Structure of authentication reply from Kobalos (encrypted with the RSA public key)

Size (bytes) Description Value

4 Magic 0x7FFF000A

16
RC4 key for inbound
traffic

RC4 key to use for traffic to the compromised host

16
RC4 key for outbound
traffic

RC4 key to use for traffic from the compromised host

2 Bound port
TCP port open to use as the active channel. Set to 0xFFFF means
it’s using the existing connection.

282 Padding

Active channel
After authentication is accepted, the active channel may use a different port than the one used
for authentication. You may have noticed that the client authenticating to Kobalos must provide
a “port to bind” in its encrypted message.

• If this value is different from 0xFFFF, Kobalos will start listening to the given TCP port.
• If this value is zero, it will start listening to a random port above 1024.

As mentioned above, the newly opened port number is included in the authentication reply alongside
the pair of RC4 keys. This additional TCP connection is entirely optional: if 0xFFFF is given as the TCP port
to bind to, the existing connection is used.

The rest of the communication on these TCP connections is encapsulated in packets with the format
outlined in Table 4.

Table 4 Kobalos packet structure

Size (bytes) Value

1 Magic (0x7F)

2 payload_size

1 Communication channel identifier

1 Communication channel identifier

payload_size Payload (RC4 encrypted)

The Kobalos malware will be the first to send a packet to the connected operator. It contains basic details
about the machine such as the hostname and kernel version. Figure 12 depicts the encapsulation layers
employed in this packet.

A wild Kobalos appears Tricksy Linux malware goes after HPCs18 TLP: WHITE

Magic
(0x7f)

Channel
identifiers

Packet size
(35 bytes)

Payload
(RC4-encrypted, 35 bytes)

7F 00 23 01 FF 04 0B 03 0A 00 00 05 D7 A1 76 69 6E 20 6C 69
v i n l i

Local IP address
(10.0.0.5)

Constant from
configuration

(version?)

Username (vin) Running kernel

n u x 5 50 - -. .3 3 g e e r i cn
6E 75 78 20 35 2E 33 2E 30 2D 35 33 2D 67 65 6E 65 72 69 63

Command ID
(4, host info reply)

Connection
destination
port (55201)

Figure 12 // Information sent from the compromised host to the operator

Figure 13 provides a summary of the link establishment processes between Kobalos and its client.

Connection
establishement

(alternatives)

Authentication

Active Channel
(RC4 encrypted)

Operator Kobalos

Connect to SSH sever using source port 55201

Command

Connect to Kobalos listening on a TCP port

Report to server

C&C Server
(Kobalos-infected)

Send RC4 keys (RSA-encrypted with public key)

Send victim profile

Reply

Authentication Success

Authentication Failure

Loop

Disconnect

Create tunnel

Reconnect to requested TCP port (optional)

Send authentication packet
(RSA-encrypted with private key, 320 bytes)

Figure 13 // Sequence diagram summarizing Kobalos network protocols

A wild Kobalos appears Tricksy Linux malware goes after HPCs19 TLP: WHITE

4.5 Malware operation
Once authenticated, an operator can issue various commands to the backdoor. We can split them
into the following categories:

1. Connect to other Kobalos-compromised servers and act as a proxy.

2. Read and write any files on the file system.

3. Launch and access a pseudo-terminal on the compromised host.

4. Run and manage Kobalos C&C servers and access connected bots.

Commands are encapsulated in the active channel and start with a single byte to identify the command,
followed by parameters parsed by that command. The commands documented in this paper are the ones
handled by the Kobalos malware, meaning they are sent from the operators to the compromised system
using a custom client. Replies from Kobalos have a similar format, with their first byte being an identifier,
and are handled by that custom client. An example is the “send host info” command (0x04) sent after
authentication, as described above.

Use as proxy
Operators can use Kobalos installed on a compromised machine to connect to another instance
of the malware running on a different system.

The proxy functionality expects specific packet sizes for authentication and encapsulation specific
to Kobalos as described above, so it’s not a simple, raw TCP proxy.

When connecting to a third-party machine, the operator can choose the TCP source port. This allows
connecting to instances expecting a specific source port. It also supports having the active channel
(see Active channel) run through an alternate port. A command can be issued to reconnect to the host
to the alternate port.

One of the end goals of this feature is to provide a certain level of anonymity to the malware operators.
The end node would only see the IP address of another compromised machine, and not the IP address
of the operator. To mask the operators’ IP address even further, it is possible to chain multiple
Kobalos-compromised machines as proxies to a final Kobalos-compromised machine.
Figure 14 shows the network connections involved in this scenario

Server compromised
with Kobalos

Operator

Tunnel after
authentication

Server compromised
with Kobalos

Tunnel after
authentication

Use backdoor
access

Figure 14 // Kobalos used as proxy

A wild Kobalos appears Tricksy Linux malware goes after HPCs20 TLP: WHITE

Commands controlling Kobalos’s proxy mechanism are documented in Table 5.

Table 5 Commands to use Kobalos as a proxy

Command Description Parameters

0x01
Establish connection to another
Kobalos-compromised host.

Remote address

Source port

Destination port

Authentication message (320 bytes)

0x03
Reconnect using another destination port.
Useful when active channel is requested
in a new TCP connection.

Destination port

0x05 Close connection to the other host. None

File system access
Once authenticated, an operator can read or write any file on the system.

In the Kobalos network protocol, an encapsulated Kobalos payload size is defined using a 16-bit integer.
It means that the operator can only send a 64 kB packet. For example, if the operator wants to write 200 kB
of data into a file, four successive write commands are needed. The read command is even more restricted,
as only 1000 bytes of data are read and sent at a time.

Table 6 lists the commands implementing file-system-related operations.

Table 6 Commands understood by Kobalos for reading and writing files

Command Description Parameters

0x18 Open file for writing; create it if it doesn’t exist.
Seek position

File path

0x1A Write data to file.
Data to write. Data will be overwritten
at the seek position.

0x1C Close file after write. None

0x1D Open and read file.
Seek position

File path

0x20 Close file after read. None

A wild Kobalos appears Tricksy Linux malware goes after HPCs21 TLP: WHITE

Pseudo-terminal creation
This functionality allows an authenticated operator to spawn a shell in a new pseudo-terminal and execute
arbitrary commands at the command prompt. Internally, it is managed by the commands listed in Table 7.

Table 7 Commands for creating and managing pseudo-terminals

Command Description Parameters

0x12 Start a new pseudo-terminal.
Path to shell (e.g. /bin/sh)

Argument

0x0D Set pseudo-terminal window size. Values of winsize struct as accepted by TIOCSWINSZ

0x14 Close pseudo-terminal. None

0x16 Write to pseudo-terminal. Data to write

The data output from the terminal is sent back to the operators and uses the command ID 0x17 followed
by the data. This command is implemented on the client used by the operators.

Use as a C&C server
One of the most unique features of Kobalos is that the code that runs the C&C server is in the malware itself.
This enables the perpetrator to use any Kobalos-compromised machine to turn it into a C&C server
(for other bots) simply by sending a single command.

After the C&C server is started, the malware authors can set the IP address and port of this new C&C server
in the configuration of the future Kobalos instances they will deploy on other hosts. This feature has two
main advantages:

• It allows using compromised resources as C&C servers instead of renting a server at a traditional
hosting provider. This reduces the risk for the server to be taken down.

• It allows using the C&C server as a pivot point to machines behind firewalls that are not normally
reachable from the internet.

When the operator sends the “turn on C&C mode” command (0x21), a port is given as a parameter.
Kobalos starts listening on this port and bots will use it to connect to this C&C server instance. It will also
listen to the next higher port. For example, if the TCP port 7070 is used for the bots, Kobalos in C&C mode
will also listen to 7071. This second port is used by the operator to control the C&C functionality,
such as listing bots and establishing tunnels to them. This is outlined in Figure 15.

https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/baselib-ttyio-2.html

A wild Kobalos appears Tricksy Linux malware goes after HPCs22 TLP: WHITE

Server compromised
with Kobalos

Running C&C
server on port 7070

Operator
Server compromised

with Kobalos

Server compromised
with Kobalos

Server compromised
with Kobalos

Use backdoor
access or TCP/7071

TCP/7070

Tunnel after
authentication

TCP/7070

Figure 15 // Operator of Kobalos reaching out to bots reporting to a C&C server

Table 8 lists the commands to enable and manage the C&C server functionality.

Table 8 Commands for managing a Kobalos C&C server

Command Description Parameters

0x21 Start a C&C server. TCP port to open for C&C server

0x23
Get number of active connections and total
number of connections since C&C was started.

0x25 List all bots ready for commands.

0x29 Shutdown C&C server.

0x2B Establish connection to bot.
Index of bot to connect to in list of bots

Authentication message (320 bytes)

0x2D
Establish connection to bot without
authentication.

Index of bot to connect to in list of bots

Commands 0x23—0x2D are handled by the C&C server subprocess. As seen in Figure 16, when they are sent
on the active channel, the data is forwarded via TCP to the loopback interface of the control port (port used
by bots plus one) of the C&C server.

Figure 16 // Packets related to managing the C&C server forwarded to the subprocess via TCP

A wild Kobalos appears Tricksy Linux malware goes after HPCs23 TLP: WHITE

Other commands
Environment variables

There’s a command to set environment variables for the backdoor process (see Table 9). It takes a string
as a parameter and simply passes it to putenv, which expects the format “VAR=value”.

Table 9 Other commands understood by Kobalos

Command Description Parameters

0x0E Set environment variable in session. String to pass to putenv

No-op

Two other commands are implemented, but they do not perform any operations, as seen in Figure 17.
We see two possible explanations:

• They were removed because they were used in previous versions and are no longer necessary.
• They are platform-specific and do not apply to the Linux or FreeBSD variants of Kobalos we analyzed.

Figure 17 // Commands 0x07 and 0x09 do not perform any operation

The latter explanation seems more likely, since we know strings for Solaris, AIX and Windows are present
(see Encrypted strings).

https://pubs.opengroup.org/onlinepubs/9699919799/functions/putenv.html

A wild Kobalos appears Tricksy Linux malware goes after HPCs24 TLP: WHITE

5. OPENSSH CREDENTIAL STEALER
On most systems compromised by Kobalos, malware was also deployed to steal SSH credentials via
a trojanized SSH client. Different variants of these files were found, including Linux and FreeBSD instances.
Unlike Kobalos, this credential stealer features almost no obfuscation.

Their main capabilities consist of stealing hostname, port, username and password used to establish an SSH
connection from the compromised host. They are saved into an encrypted file. Recent versions of this trojan
also feature the ability to exfiltrate credentials over the network via UDP, but this was not activated
in the configuration of most of the samples we analyzed.

At the time we published our previous research on OpenSSH backdoors, “The dark side of the ForSSHE”,
we didn’t know about this credential stealer and it doesn’t correspond to any malware family we described
in that paper. We also cannot map it to any other publicly documented OpenSSH credential stealer.

The location of the file where the stolen SSH credentials are saved varies depending on the variant.
All samples create a file under /var/run with a “.pid” extension. The “.pid” file extension is used for most
of the legitimate files under /var/run. See the SSH credential stealer samples in the Indicators of compromise
section for example filenames and paths used in various samples.

All samples found use the same simple cipher for the contents of the files. As seen in Figure 18 it simply
adds 123 to each byte of data to be saved.

Figure 18 // Encrypting and writing SSH credentials to a file

For the FreeBSD version, the same format and cipher is applied. However, there are some small
implementation differences, such as encrypting the file path in the malware with a single-byte XOR.

A wild Kobalos appears Tricksy Linux malware goes after HPCs25 TLP: WHITE

5.1 An evolving malware family
After we notified one of the victims, they found what seems to be a more recent version
of the credential stealer.

This new version contains an encrypted configuration and adds the functionality to exfiltrate credentials
over UDP to a remote host specified in the configuration. Exfiltrating credentials over UDP is something
Ebury and other SSH credential stealers such as Bonadan, Kessel and Chandrila have been doing. The choice
of UDP could be to bypass a firewall and avoid creating TCP network flow to potentially untrusted hosts.

It can only use one exfiltration method, file or network, because the configuration holds the target
hostname and file path in the same variable.

Figure 19 shows the decompiled code responsible for sending data over UDP. Figure 20 is the
configuration blob found in the sample. This sample was configured to write stolen credentials
in /var/run/sshd/sshd.pid.

Figure 19 // Malware sending credentials over UDP

Figure 20 // Example configuration using a file to write stolen credentials

Interestingly, the configuration includes the hostname of the victim. It is likely used by the operators
to know the origin of the credentials. This also means that each compromised server receives a unique
sample of the credential stealer.

A wild Kobalos appears Tricksy Linux malware goes after HPCs26 TLP: WHITE

6. CONCLUSION
The numerous well-implemented features and the network evasion techniques show the attackers
behind Kobalos are much more knowledgeable than the typical malware author targeting Linux and other
non-Windows systems. Their targets, being quite high profile, also show that the objective of the Kobalos
operators isn’t to compromise as many systems as possible. Its small footprint and network evasion
techniques may explain why it went undetected until we approached victims with the results of our
internet-wide scan.

One of the questions we cannot answer is what the intentions of the attackers are. The actions that
the backdoor can perform are very generic and could be used for any purpose. No other malware, besides
the SSH password stealer, was found on the compromised machines, which we strongly suspect as the entry
point rather than the payload. According to system administrators of the compromised HPC systems,
there was no attempt to perform cryptocurrency mining or any other computationally expensive tasks.
What are these attackers after?

Another thing we couldn’t determine is how long this malware has been in use. We found strings related
to Windows 3.11 and Windows 95 – operating systems released more that 25 years ago. Did Kobalos variants
exist for Windows and has this malware been around for such a long time? We know there were new
compromises in 2019 and 2020, but couldn’t find evidence of its usage before that time.

Even though the authors of this malware seem knowledgeable about IP networking and the operating
systems they target, there are still a few weaknesses to Kobalos. First, there are issues with the cryptography,
perhaps due to advances in the field if Kobalos actually is very old. Secondly, it’s possible to fingerprint
variants passively listening, especially if it requires a specific TCP source port. We successfully exploited
this flaw to find and notify victims in an effort to reduce the number of compromised hosts and better
understand this newly discovered threat.

We would like to acknowledge the work of Maciej Kotowicz from MalwareLab pl who also analyzed Kobalos inde-
pendently and with whom we mutually share results He presented on this threat at the Oh My H@ck 2020 conference

https://twitter.com/maciekkotowicz
https://malwarelab.pl/
https://omhconf.pl/lecture#id=63871

A wild Kobalos appears Tricksy Linux malware goes after HPCs27 TLP: WHITE

7. APPENDIX – INLINED FUNCTIONS IN KOBALOS

Value Short Description Parameters Description

1003 INITIALIZE socket, filter
Start Kobalos using the given process
if it matches a given filter (an integer
from an enum).

1004 START_LISTENING none
Start listening or connect to a C&C server
based on malware configuration.

1005 START_C2_SERVER socket_1, socket_2 Start the C&C server.

1006 SEND_PACKET
socket_fd, &channel_1,
&channel_2, data,
data_len

Send Kobalos-encapsulated data
to socket_fd.

1007 RECV_PACKET
socket_fd, &channel_1,
&channel_2, data,
data_len

Receive a Kobalos-encapsulated packet
from socket_fd.

1008 GET_RANDOM_INT returns random_int
Get a random 32-bit integer. PRNG seeded
with current time.

1009 GET_HOST_INFO
out_buf, returns
buf_len

Get a buffer with hostname, IP address
and running kernel version.

1010 SET_COMMON_SOCKOPT socket
Set SO_REUSEADDR and SO_KEEPALIVE
to true and SO_LINGER to 15 seconds.

1011 RC4_DECRYPT_STRING_INPLACE str, len
RC4-decrypt the string str with the
RC4 key from the malware configuration.

1012 CLEANUP_THINGS
what_to_close,
send_report

Both parameters are integers. Close
sockets and free memory. Send report.

1013 RC4_INIT context, key_size, key
Initialize the RC4 algorithm
with the provided key.

1014 RC4_CRYPT
context, len, data_in,
data_out

Perform RC4 encryption or decryption.

1015 MD5
input, input_len,
output_digest

Compute MD5 hash.

1016
to 1037

Asymmetric cryptography related functions

1038 RSA_PUBLIC_DECRYPT
data_in, data_out,
public_key

Encrypt or decrypt using the provided
public RSA key.

1039 LOAD_PUB_KEY
key_bin_data,
public_key

Load the public RSA key blob
in key_bin_data to public_key.

A wild Kobalos appears Tricksy Linux malware goes after HPCs28 TLP: WHITE

8. INDICATORS OF COMPROMISE

8.1 ESET detection names
• Linux/Kobalos
• Linux/Agent.IV
• Linux/SSHDoor.EV
• Linux/SSHDoor.FB
• Linux/SSHDoor.FC

8.2 Samples

Kobalos

SHA-1 Target OS Embedded in Reachability

FBF0A76CED2939D1F7EC5F9EA58C5A294207F7FE RHEL sshd
Wait for connection
from source port 55201

479F470E83F9A5B66363FBA5547FDFCF727949DA Debian Stand-alone
Connects to
151.80.57[.]191:7070

AFFA12CC94578D63A8B178AE19F6601D5C8BB224 FreeBSD sshd
Wait for connection
from source port 55201

325F24E8F5D56DB43D6914D9234C08C888CDAE50 Ubuntu sshd
Wait for connection
from source port 55201

A4050A8171B0FA3AE9031E0F8B7272FACF04A3AA Arch Linux sshd
Wait for connection
from source port 55201

SSH credential stealer

SHA-1 Target OS Writes to

6616DE799B5105EE2EB83BBE25C7F4433420DFF7 RHEL /var/run/nscd/ns.pid

E094DD02CC954B6104791925E0D1880782B046CF RHEL /var/run/udev/ud.pid

1DD0EDC5744D63A731DB8C3B42EFBD09D91FED78 FreeBSD /var/run/udevd.pid

C1F530D3C189B9A74DBE02CFEB29F38BE8CA41BA Arch Linux /var/run/nscd/ns.pid

659CBDF9288137937BB71146B6F722FFCDA1C5FE Ubuntu /var/run/sshd/sshd.pid

8.3 Keys

RSA public key
-----BEGIN PUBLIC KEY-----
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAOUgD8sEF1kZ04QxCd60HrB+TxWnLQED
wzb0sZ8vMMD6xnUAJspdYzSVDnRnKYjTOM43qtLNcJOwVj6cuC1uHHMCAwEAAQ==
-----END PUBLIC KEY-----

Static RC4 key for strings
AE0E05090F3AC2B50B1BC6E91D2FE3CE

A wild Kobalos appears Tricksy Linux malware goes after HPCs29 TLP: WHITE

8.4 YARA rules
rule kobalos
{
 meta:
 description = “Kobalos malware”
 author = “Marc-Etienne M.Léveillé”
 date = “2020-11-02”
 reference = “http://www.welivesecurity.com”
 source = “https://github.com/eset/malware-ioc/”
 license = “BSD 2-Clause”
 version = “1”

 strings:
 $encrypted_strings_sizes = {
 05 00 00 00 09 00 00 00 04 00 00 00 06 00 00 00
 08 00 00 00 08 00 00 00 02 00 00 00 02 00 00 00
 01 00 00 00 01 00 00 00 05 00 00 00 07 00 00 00
 05 00 00 00 05 00 00 00 05 00 00 00 0A 00 00 00
 }
 $password_md5_digest = { 3ADD48192654BD558A4A4CED9C255C4C }
 $rsa_512_mod_header = { 10 11 02 00 09 02 00 }
 $strings_RC4_key = { AE0E05090F3AC2B50B1BC6E91D2FE3CE }

 condition:
 any of them
}

rule kobalos_ssh_credential_stealer {
 meta:
 description = “Kobalos SSH credential stealer seen in OpenSSH client”
 author = “Marc-Etienne M.Léveillé”
 date = “2020-11-02”
 reference = “http://www.welivesecurity.com”
 source = “https://github.com/eset/malware-ioc/”
 license = “BSD 2-Clause”
 version = “1”

 strings:
 $ = “user: %.128s host: %.128s port %05d user: %.128s password: %.128s”

 condition:
 any of them

}

A wild Kobalos appears Tricksy Linux malware goes after HPCs30 TLP: WHITE

9. MITRE ATT&CK TECHNIQUES
This table was built using version 8 of the ATT&CK framework.

Tactic ID Name Description

Persistence

T1554
Compromise Client
Software Binary

Kobalos may embed its malicious payload
in the OpenSSH server and replace the legitimate
file (sshd).

Kobalos replaces the SSH client on compromised
systems to steal credentials.

T1205 Traffic Signaling
Kobalos may be triggered by an incoming
TCP connection to a legitimate service from
a specific source port.

Defense Evasion

T1070 003 Clear Command History
No command history related to the attack
was found on Kobalos-infected machines.

T1070 006 Timestomp
When files are replaced by Kobalos operators,
timestamps are forged.

T1027 002 Software Packing
Kobalos’s code is flattened into a single
function using a custom packer and its strings
are encrypted.

Command
And Control

T1573 001
Encrypted Channel:
Symmetric Cryptography

Kobalos’s post-authentication communication
channel is encrypted with RC4.

T1573 002
Encrypted Channel:
Asymmetric Cryptography

Kobalos’s authentication and key exchange
is performed using RSA-512.

T1090 003 Proxy: Multi-hop Proxy
Kobalos can serve as a proxy to other
Kobalos-compromised systems.

https://attack.mitre.org/versions/
https://attack.mitre.org/versions/v8/techniques/T1554/
https://attack.mitre.org/versions/v8/techniques/T1205/
https://attack.mitre.org/versions/v8/techniques/T1070/003
https://attack.mitre.org/versions/v8/techniques/T1070/006
https://attack.mitre.org/versions/v8/techniques/T1027/002
https://attack.mitre.org/versions/v8/techniques/T1573/001
https://attack.mitre.org/versions/v8/techniques/T1573/002
https://attack.mitre.org/versions/v8/techniques/T1090/003

About ESET
For more than 30 years, ESET® has been developing industry-leading IT security

software and services to protect businesses, critical infrastructure and consumers

worldwide from increasingly sophisticated digital threats. From endpoint and mobile

security to endpoint detection and response, as well as encryption and multifactor

authentication, ESET’s high-performing, easy-to-use solutions unobtrusively protect

and monitor 24/7, updating defenses in real time to keep users safe and businesses

running without interruption. Evolving threats require an evolving IT security

company that enables the safe use of technology. This is backed by ESET’s R&D

centers worldwide, working in support of our shared future. For more information,

visit www.eset.com or follow us on LinkedIn, Facebook and Twitter.

http://www.eset.com/int/
https://www.eset.com/
https://www.linkedin.com/company/28967?trk=tyah&trkInfo=tarId%3A1402921556545%2Ctas%3AESET%2Cidx%3A2-1-4
https://www.facebook.com/eset?ref=br_tf
https://twitter.com/ESET

