ESET Research Whitepapers // January 2018 // Author: Filip Kafka

DEOBFUSCATING
AND
DEVIRTUALIZING
FINFISHER

®
EN)OY SAFER TECHNOLOGY™

ESET's guide to deobfuscating and devirtualizing FinFisher

CONTENTS

Introduction 3
Anti-disassembly 4
FinFisher’s virtual machine 7
Terms and definitions 8

Vm_start 8

FinFisher's interpreter 10

1. Creating an IDA graph 10

2. Vm_dispatcher 1
3.Vm_context 12

4. Virtual instruction implementations — vm_handlers 14

5. Writing your own disassembler 17

6. Understanding the implementation of this virtual machine 19

7. Automating the disassembly process for more FinFisher samples 20

8. Compiling disassembled code without the VM 20

Conclusion 22
Appendix A: IDA Python script for naming FinFisher vm_handlers 23

ESET's guide to deobfuscating and devirtualizing FinFisher

INTRODUCTION

Thanks to its strong anti-analysis measures, the
FinFisher spyware has gone largely unexplored.
Despite being a prominent surveillance tool,
only partial analyses have been published on its
more recent samples.

Things were put in motion in the summer

of 2017 with ESET's analysis of FinFisher
surveillance campaigns that ESET had
discovered in several countries. In the course of
our research, we have identified campaigns where

internet service providers most probably played

the key role in compromising the victims with
FinFisher.

When we started thoroughly analyzing this
malware, the main part of our effort was
overcoming FinFisher’s anti-analysis measures
in its Windows versions. The combination

of advanced obfuscation techniques and
proprietary virtualization makes FinFisher very
hard to de-cloak.

To share what we learnt in de-cloaking this
malware, we have created this guide to help
others take a peek inside FinFisher and analyze
it. Apart from offering practical insight into
analyzing FinFisher's virtual machine, the
guide can also help readers to understand
virtual machine protection in general - that

is, proprietary virtual machines found inside a
binary and used for software protection. We
will not be discussing virtual machines used in
interpreted programming languages to provide
compatibility across various platforms, such as
the Java VM.

We have also analyzed Android versions of
FinFisher, whose protection mechanism is based
on an open source LLVM obfuscator. It is not as
sophisticated or interesting as the protection
mechanism used in the Windows versions, thus
we will not be discussing it in this guide.

Hopefully, experts from security researchers to
malware analysts will make use of this guide to
better understand FinFisher's tools and tactics,
and to protect their customers against this
omnipotent security and privacy threat.

https://www.welivesecurity.com/2017/09/21/new-finfisher-surveillance-campaigns/
https://www.welivesecurity.com/2017/09/21/new-finfisher-surveillance-campaigns/

ESET's guide to deobfuscating and devirtualizing FinFisher

ANTI-
DISASSEMBLY

When we open a FinFisher sample in IDA Pro,
the first protection we notice in the main
function is a simple, yet very effective, anti-
disassembly trick.

FinFisher uses a common anti-disassembly
technique - hiding the execution flow by
replacing one unconditional jJump with two
complementary, conditional jumps. These
conditional jJumps both target the same
location, so regardless of which jump is made,
the same effective code execution flow results.
The conditional jumps are then followed by
garbage bytes. These are meant to misdirect the
disassembler, which normally will not recognize
that they are dead code, and will steam on,
disassembling garbage code.

What makes this malware special is the way
in which it uses this technique. In most other
malware we've analyzed, it is only used a few
times. FinFisher, however, uses this trick after
every single instruction.

This protection is very effective at fooling the
disassembler — many parts of the code aren't
disassembled properly. And of course, it is
impossible to use the graph mode in IDA Pro.
Our first task will be to get rid of this anti-
disassembly protection.

The code was clearly not obfuscated manually
but with an automated tool and we can observe
a pattern in all the jump pairs.

There are two different types of jump pairs —
near jump with a 32-bit offset and short jump
with an 8-bit offset.

The opcodes of both conditional near jumps
(with a dword as a jump offset) start with a
OxOF byte; while the second bytes are equal

to 0x8?, where ? in both jump instructions
differs only by 1bit. This is because x86 opcodes
for complementary jumps are numerically
consecutive. For example, this obfuscation
scheme always pairs JE with JNE (OxOF 0x84 vs
OxOF 0x85 opcodes), JP with JNP (OXOF Ox8A vs
OxOF 0x8B opcodes), and so on.

These opcodes are then followed by a 32-

bit argument specifying the offset to the
destination of the jump. Since the size of

both instructions is 6 bytes, the offsets in two
consequent jumps differ exactly by 6. (Figure 1)

. text:00402062 loc_402062:
. text:00402062
. text:00402062 8B 77 14 offset mov esi, [edi+14h]
.text:00402065 OF||8E|[A1 FA FF jle loc_401B0C
. text:0040206B OF||8F||9B_FA FF ig loc_401B0C
.text:00402071 OC 28 or al, 28h
+1 -6
. text:00401B0C loc_401B0C:
. text:00401B0C
. text:00401BOC FC offset cld
. text:00401B0D OF||8E||2C 04 00 00 jle loc_401F3F
.text:00401B13 OF||8F||26_04 00 00 ig loc_401F3F
.text:00401B19 46 inc esl
+1 -6
.text:00401F3F loc_401F3F:
. text:00401F3F
.text:00401F3F AD offset lodsd
.text:00401F40 OF||87||[EB FC FF Jja loc_401C31
.text:00401F46 OF||86||E5 FC FF jbe loc_401C31
+1 -6

Figure 1 // Screenshot showing instructions followed by two conditional near jumps every time

ESET's guide to deobfuscating and devirtualizing FinFisher

For example, the code below can be used to detect two of these consecutive conditional jumps:

def is_jump_near pair(addr):
jeccl = Byte(addr+1)
jcc2 = Byte(addr+7)

do they start like near conditional jumps?
if Byte(addr) != O0xOF || Byte(addr+6) != OxOF:

return False

are there really 2 consequent near conditional jumps?
if (jccl & OXFO != 0x80) || (jcc2 & OxXFO != 0x80):

return False

are the conditional jumps complementary?

if abs(jccl-jcc2) != 1:
return False

do those 2 conditional jumps point to the same destination?

dstl = Dword(addr+2)
dst2 = Dword(addr+8)
if dstl-dst2 != 6:

return False
return True

Deobfuscation of short jumps is based on the
same idea, only the constants are different.

The opcode of a short conditional jump equals
0x7?, and is followed by one byte - the jump
offset. So again, when we want to detect two
consecutive, conditional near jumps, we have to
look for opcodes: 0x7?; offset; 0x7? + 1; offset -2.
The first opcode is followed by one byte, which
differs by 2 in two consequent jumps (which is,
again, the size of both instructions). (Figure 2)

For example, this code can be used to detect
two conditional short jumps:

def is_jcc8(b):
return b&0xXF0 == 0x70
def is_jump_short pair(addr):
jecl = Byte(addr)
jecc2 = Byte(addr+2)
if not is_jcc8(jccl) || not
is_ jcc8(jcc2):
return False
if abs(jcc2-jccl) != 1:
return False
dstl = Byte(addr+1)
dst2 = Byte(addr+3)
if dstl - dst2 != 2:
return False
return True

After detecting one of these conditional jump
pairs, we deobfuscate this code by patching the
first conditional jump to unconditional (using
the OXE9 opcode for the near jump pairs and
OxEB for the short jump pairs) and patch the
rest of the bytes with NOP instructions (0x90)

def patch_jcc32(addr):
PatchByte(addr, 0x90)
PatchByte(addr+1l, OxE9)
PatchWord(addr+6, 0x9090)
PatchDword(addr+8,

0x90909090)

def patch_jcc8(addr):
PatchByte(addr, OxXEB)
PatchWord(addr+2, 0x9090)

In addition to these two cases, there might be
some places where a jump pair consists of a
short and a near jump, rather than two jumps of
the same category. However, this only occurs in
a few cases in the FinFisher samples and can be
fixed manually.

With these patches made, IDA Pro starts to
“understand” the new code and is ready (or at
least almost ready) to create a graph. It may be
the case that we still need to make one more
improvement: append tails, i.e. assign the node
with the destination of the jump to the same

ESET's guide to deobfuscating and devirtualizing FinFisher

.text:00402033 loc_402033:
. text:00402033 offset
. text:00402033 51 push
.text:00402034 ja
. text:00402036 |76(|C1 jbe
. text:00402038 A5 movsd

] +1 -2
. text:00401A03 loc_401A03:
. text:00401A03 offset
.text:00401A03 53 push
. text:00401A04 is
. text:00401A06 |7T9||B1 jns

+1 -2

ecx
short loc_401FF9
short loc_401FF9

ebx
short loc_4019B9
short loc_4019B9

Figure 2 // Examples of instructions followed by two conditional short jumps every time

graph where the node with the jump instruction
is located. For this, we can use the IDA Python
function append_func_tail.

The last step of overcoming the anti-disassembly
tricks consists of fixing function definitions. It may
still occur that the instruction after the jumps is
push ebp, in which case IDA Pro (incorrectly)
treats this as the beginning of a function and
creates a new function definition. In that case, we
have to remove the function definition, create the
correct one and append tails again.

This is how we can get rid of FinFisher's first
layer of protection — anti-disassembly.

ESET's guide to deobfuscating and devirtualizing FinFisher

FINFISHER'S
VIRTUAL
MACHINE

After a successful deobfuscation of the first
layer, we can see a clearer main function whose
sole purpose is to launch a custom virtual
machine and let it interpret the bytecode with
the actual payload.

As opposed to a regular executable, an
executable with a virtual machine inside uses
a set of virtualized instructions, rather than
directly using the instructions of the processor.
Virtualized instructions are executed by a
virtual processor, which has its own structure
and does not translate the bytecode into a
native machine code. This virtual processor as
well as the bytecode (and virtual instructions)
are defined by the programmer of the virtual
machine. (Figure 3)

As mentioned in the introduction, a well-known
example of a virtual machine is the Java Virtual
Machine. But in this case, the virtual machine

is inside the binary, so we are dealing with a
virtual machine used for a protection against
reverse engineering. There are well-known
commercial virtual machine protectors, for
example VMProtect or Code Virtualizer.

The FinFisher spyware was compiled from
source code and the compiled binary was
then protected with a virtual machine at the

BYTECODE

VIRTUAL CPU

assembly level. The protection process includes
translating instructions of the original binary
into virtual instructions and then creating a

new binary that contains the bytecode and the
virtual CPU. Native instructions from the original
binary are lost. The protected, virtualized
sample must have the same behavior as a non-
protected sample.

To analyze a binary protected with a virtual
machine, one needs to:
1. Analyze the virtual CPU.
2. Write one's own disassembler for this custom
virtual CPU
and parse the bytecode.
3. Optional step: compile the disassembled code
into a binary file to
get rid of the virtual machine.

The first two tasks are very time-consuming,
and the first one can also get quite difficult.

It includes analyzing every vm_handler and
understanding how registers, memory access,
calls, etc. are translated.

NATIVE CPU

FinFisher

Figure 3 // Bytecode interpreted by the virtual CPU

ESET's guide to deobfuscating and devirtualizing FinFisher

Terms and definitions

There is no standard for naming particular parts
of a virtual machine. Hence, we will define some
terms which will be referenced throughout the
whole paper.

 Virtual machine (vm) - custom, virtual CPU;
contains parts like the
vm_dispatcher, vm_start, vm_handlers

e vm_start - the initialization part; memory
allocation and decryption routines are
executed here

* Bytecode (also known as pcode) - virtual
opcodes of vm_instructions with their
arguments are stored here

e vm_dispatcher — fetches and decodes virtual
opcode; is basically a preparation for the
execution of one of the vm_handlers

e vm_handler — an implementation of a
vm_instruction; executing one vm_handler
means executing one vm_instruction

* Interpreter (also known as vm_loop) -
vm_dispatcher + vm_handlers — the virtual
CPU

« Virtual opcode — an analog of the native
opcode

e vm_context (vm_structure) — an internal
structure used by the interpreter

e vi_params - astructure in the vm_context
structure; the virtual instruction parameters,
used by the vm_handIler; it includes the
vm_opcode and arguments

When interpreting the bytecode, the virtual
machine uses a virtual stack and a single virtual
register.

e vm_stack — an analog of a native stack, which
is used by the virtual machine

e vm_register — an analog of a native register,
used by this virtual machine; further
referenced as tmp_REG

e vm_instruction — an instruction defined
by developers of vm; the body (the
implementation) of the instruction is called its
vm_handler

In the following sections, we will describe the
parts of the virtual machine in more technical
detail and explain how to analyze them.

A deobfuscated graph of the main malware
function consists of three parts - an
initialization part and two other parts which
we have named vm_start and interpreter
(vm_dispatcher + vm_handlers).

The initialization part specifies a unique
identifier of what could be interpreted as a
bytecode entry point, and pushes it on the stack.
Then, it jumps to the vm_start part that is an
initialization routine for the virtual machine
itself. It decrypts the bytecode and passes
control to the vm_dispatcher that loops over
the virtual instructions of the bytecode and
interprets them using the vm_handlers.

The vm_dispatcher starts with a pusha
instruction and ends with a jmp dword ptr
[eax+ecx*4] instruction (or similar), which is a
jump to the relevant vm_handler.

Vm_start

The graph created after the deobfuscation of
the first layer is seen in Figure 4. The vm_start
part is not so important for the analysis of the
interpreter. However, it can help us understand
the whole implementation of the vm; how it
uses and handles virtual flags, virtual stack, etc.
The second part - the vm_dispatcher with
vm_handlers - is the crucial one.

The vm_start is called from almost every
function, including the main function. The calling
function always pushes a virtual instruction
identifier and then it jumps to vm_start. Every
virtual instruction has its own virtual identifier.
In this example, the identifier of the virtual

entry point, where the execution from the main
function starts, is 0x21CD0554. (Figure 5)

In this part, there is a lot of code for preparing
thevm_dispatcher — mainly for preparing
the bytecode and allocating memory for the

ESET's guide to deobfuscating and devirtualizing FinFisher

00406659 stc

0040665A pop edx
0010665C push [SicpossaR)» |D.Of virtual
pus [(21CD0554h |- . .
00406661 push eox Instruction
00406662 xor ecx, ecx
00406664 po) ecx [[B]
00406665 72 vm_start G wrefs to vm start =
00406665 main endp Direction Type Address Text i
00406665 @ann i sub_406108+5 jmp vm_start
S Down j main+4EF iz vm_start
[52] Down i sub_406670420 jz wm_start
i || 5= Down j sub_40670B+236 jz vm_start
vm_start: = pown sub_406A10+33 jz wmstart +
pusha pushf [[F
[OK] l Cancel] [Search] [Help]
Elﬁl@ 35? Lme515f119

Figure 5 // vm_start is called from each of the 119 virtualized functions.
The ID of the first virtual instruction of the respective function
is given as an argument.

whole interpreter. The most important parts of the code do the

following:

1. Allocate IMB with RWX permission for bytecode and a few
more variables.

2. Allocate 0x10000 bytes RWX for local variables in the virtual
machine for the current thread - the vm_stack.

3. Decrypt a piece of code using an XOR decryption routine. The
decrypted code is an aPLib unpacking routine.

The XOR decryption routine used in the sample is a slightly

vm_start
Oy
i AL LR -

modified version of XOR dword, key routine. Actually, it skips
the first of the six dwords and then XORs only the remaining
5 dwords with the key. Following is the algorithm for the

LT

routine (further referred to as XOR decryption_code): —
int array[6];
int key;
for (i = 1; i < 6; i++) {
array[i] ~= key;
. 00 —©
I
%)
=)
- Q,
4. Call aPLib unpacking routine to unpack bytecode. After U
unpacking, virtual opcodes are still encrypted. e
)
Preparing virtual opcodes (step 1, 3 and 4) is done only once - -lr—JU
at the beginning — and is skipped in subsequent executions of ‘ol
vm_start, when only instructions for proper handling of flags 4] 4&_4)
and registers are executed. © Q, —
<
I HORES
S 5 5
> =)
T +
b
Q, @
g O
=N

Figure 4 // Graph of the vm_start and vm_dispatcher

ESET's guide to deobfuscating and devirtualizing FinFisher

0040665C 68 54 05 CD 21 push 21CD0554h
00406661 51 push ecx
00406662 31 C9 xor ecx, ecx
00406664 59 pop ecx
00406665 OF 84 D5 B2 FF FF jz vm_start
00406665 main endp
00406665

vi_start:
pusha pushf

executing for the first time? {
alloc RWX IMB for bytecode

)

W= FE
already allocated space for this thread?

] § 1
Wel= F0E
alloc 0x10000b RWX space for this thread

bytecode available?|

L i

W= F0O | W= FOE
try refresh bytecode address| |allocate space for aPLib routine and decrypt it

| allocate space for bytecode and unpack it with decrypted aPLib routine

popf
popa

find virtual IP

. START OF FUNCTION CHUNK FOR main

loc 401F78:

popf

nop

jmp vm_dispatcher

Figure 6 // All the code from the vm_start to the vm_dispatcher in grouped nodes named based on their purpose.

FINFISHER'S
INTERPRETER

This part includes the vm_dispatcher with all
the vm_handlers (34 in FinFisher samples) and
is crucial for analyzing and/or devirtualizing the
virtual machine. The interpreter executes the
bytecode.

The instruction jmp dword ptr [eax+ecx*4]
jumps to one of the 34 vm_handlers. Each
vm_handler implements one virtual machine

instruction. In order to know what every
vm_handler does, we first need to understand
the vm_context and vm_dispatcher.

1. Creating an IDA graph

Before diving into it, creating a well-structured
graph can really help understanding the
interpreter. We recommend splitting the
graph into two parts - the vm_start and the
vm_dispatcher, i.e. to define a beginning of a
function at the vm_dispatcher’s first instruction.
What is still missing is the actual vm_handlers
referenced by the vm_dispatcher. In order to
connect these handlers with the graph of the

n

ESET's guide to deobfuscating and devirtualizing FinFisher

vm_dispatcher, the following functions can be
used:

AddCodeXref(addr_of_ jmp_instr,
vm_handler, XREF_USER|fl_JN)

adding references from the last vm_dispatcher
instruction to the beginnings of the
vm_handlers

AppendFchunk
appending tails again

After appending every vm_handler to the
dispatcher function, the resulting graph should
look like

UL

2. Vm_dispatcher

This part is responsible for fetching and
decoding the bytecode. It performs the
following steps:

e Executes pusha and pusf instructions to
prepare virtual registers and virtual flags for
further execution of a virtual instruction.

* Retrieves the base address of the image and
address of vm_stack

* Reads 24 bytes of bytecode specifying the
next vm_instruction
and its arguments

vm_dispatcher

jmp dword ptr [eaxtecx*4]

[ETRTEILTECEITE TR

=

Figure 7 /| Graph of the vm_dispatcher with all 34 vm_handIers.

!

vm_handler
(10of 34)

12

ESET's guide to deobfuscating and devirtualizing FinFisher

« Decrypts the bytecode with the previously
described XOR decryption routine

* Adds the image base to the bytecode
argument in case the argument is a global
variable

e Retrieves the virtual opcode (number 0-33)
from the decrypted bytecode

e Jumps to the corresponding vm_handler
which interprets the virtual opcode

After the vm_handler for an instruction has
executed, the same sequence of steps is
repeated for the next one, starting from the
vm_dispatcher’s first instruction.

In the case of the vm_call handler, the control
is passed to the vm_start part instead (except

for instances when a non-virtualized function
follows).

3. Vm_context

In this part, we will describe the vm_context
— a structure used by the virtual machine,
containing all the information necessary

for executing the vm_dispatcher and each
vm_handler.

When looking at the code of both the
vm_dispatcher and the vm_handlers in greater
detail, we can notice there are a lot of data
operation instructions, referring to ebx+offset,
where offset is a number from 0x00 to Ox50.

In Figure 8, we can see what the main part of
vm_handler 0x05 in one FinFisher sample looks
like. (Figure 8)

0040325D

0040325D

0040325D loc_40325D:
0040325D 8D 4B 40 lea ecx,
00403260 EB 18 Jjmp
00403260

START OF FUNCTION CHUNK FOR vm_dispatcher

[ebx+40h]
short loc_40327A
END OF FUNCTION CHUNK FOR vm dispatcher

:

0040327A

0040327A

0040327A loc_40327A:
0040327A 8B 09 mov ecx,
0040327C EB E7 jmp
0040327C '

START OF FUNCTION CHUNK FOR vm dispatcher

[ecx]
short loc_403265
END OF FUNCTION CHUNK FOR vm_dispatcher

‘

00403265

00403265

00403265 loc_403265:
00403265 8B 43 08 mov eax,
00403268 EB 27 Jmp
004032638 :

START OF FUNCTION CHUNK FOR vm dispatcher

[ebx+8]
short loc_403291
END OF FUNCTION CHUNK FOR vm_dispatcher

:

00403291

00403291

00403291 loc_403291:
00403291 89 08 mov
00403293 EB EE Jjmp
00403293

START OF FUNCTION CHUNK FOR vm_dispatcher

[eax], ecx
short loc_403283
END OF FUNCTION CHUNK FOR vm_dispatcher

I

Figure 8 // Screenshot of one of the vm_handlers

ESET's guide to deobfuscating and devirtualizing FinFisher

The ebx register points to a structure we named there is the following instruction:

vm_context. We must understand how this

. add dword ptr [ebx], 0x18.
structure is used — what the members are, what “ = [ebx] =

they mean, and how they are used. When solving This same member of the vm_context was
this puzzle for the first time, a bit of guessing also used earlier in the vm_dispatcher’s

is needed as to how the vm_context and its code - just before jumping to avm_handler.
members are used. The vm_dispatcher copies 24 bytes from

the structure member to a different location
([ebx+38h1]) and decrypts it with the XOR
decryption routine to obtain a part of the actual

For example, let's have a look at the sequence of
instructions at the end of the vm_dispatcher:

bytecode.
movzx ecx, byte ptr [ebx+0x3C]
// opcode for vm handler Hence, we can start thinking of the first
jmp dword ptr [eax+ecx*4] member of the vm_context ([ebx+0h]) as a
// jumping to one of the 34 vm_ vm_instruction_pointer, and of the decrypted
handlers location (from [ebx+38h] to [ebx+50h]) as an

ID of a virtual instruction, its virtual opcode and

. . . arguments. Together, we will call the structure
Since we know that the last instruction is a

jump to avm_handler, we can conclude that vi_params.

ecx contains a virtual opcode and thus the Following the steps described above, and using
0x3C member of a vm_struct refers to a virtual a debugger to see what values are stored in the
opcode number. respective structure members, we can figure

, out all the members of the vm_context.
Let's make one more educated guess. At the end

of almost every vm_handler, After the analysis, we can rebuild both
FinFisher'svm_context and vi_params
structure:

struct vm_context {

DWORD vm_instruct_ptr; // instruction pointer to the bytecode

DWORD vm_stack; // address of the vm stack

DWORD tmp_ REG; // used as a “register” in the virtual machine

DWORD vm_dispatcher_loop; // address of the vm_dispatcher

DWORD cleanAndVMDispatchFn; // address of the function which pops values and jumps
to the vm dispatcher skipping the first few instructions from it

DWORD cleanUpDynamicCodeFn; // address of the function which cleans vm_instr ptr and
calls cleanAndVMDispatchFn

DWORD jmpLocl; // address of jump location

DWORD jmpLoc2; // address of next vm _opcode - just executing next vm_instruction
DWORD Bytecode_start; // address of the start of the bytecode in data section
DWORD DispatchEBP;

DWORD ImageBase; // Image base address

DWORD ESPO_flags; // top of the native stack (there are saved flags of the vm code)
DWORD ESP1 flags; // same as previous

DWORD LoadVOpcodesSectionFn;

vi_params bytecode; // everything necessary for executing vm_handler, see below
DWORD limitForTopOfStack; // top limit for the stack

}i

ESET's guide to deobfuscating and devirtualizing FinFisher

struct vi_params {

DWORD Virtual instr_ id;

DWORD OpCode; // values 0 - 33 -> tells which handler to execute
DWORD Arg0O; // 4 dword arguments for vm_handler

DWORD Arg4; // sometimes unused

DWORD Arg8; // sometimes unused

DWORD ArgC; // sometimes unused

}i
4. Vi rtua| | nstru ction At the end of this function, we notice a
im p lementat ions - sequence of instructions, starting with the
vm h an d | ers vm_instruction_pointer, being incremented

by 24 - the size of each vm_instruction’s
vi_params structure. Since this sequence
is repeated at the end of almost every

vm_handler, we conclude it is a standard

Each vm_handler handles one virtual opcode
- since we have 34 vm_handlers, there
are at most 34 virtual opcodes. Executing

onevm_handler means executing one function epilogue and the actual body of the

vm_instruction, so in order to reveal what a vm_handler can be written as simply as:

vm_instruction does, we need to analyze the
. mov tmp_ REG Argo0
corresponding vm_handler. [tmp_REG], -

. So, there we go — we have just analyzed the
After reconstructing the vm_context and
_ _ first instruction of the virtual machine. :-)
naming all the offsets from ebx, the previously
shown vm_handler changes to a much more
readable form, as seenin Figure 9.

Y

P
0040325D . START OF FUNCTION CHUNK FOR vm_dispatcher
0040325D
0040325D loc_40325D:
0040325D 8D 4B 40 lea ecx, [ebx+vm_state. opcodes. Arg0]
00403260 EB 18 Jmp short loc_40327A
00403260 . END OF FUNCTION CHUNK FOR vm_dispatcher
ll s 5=
0040327A . START OF FUNCTION CHUNK FOR vm_dispatcher
0040327A
0040327A loc_40327A:
0040327A 8B 09 mov ecx, [ecx]
0040327C EB E7 Jmp short loc_403265
0040327C . END OF FUNCTION CHUNK FOR vm_dispatcher

i Y
FIEE
00403265 . START OF FUNCTION CHUNK FOR vm_dispatcher
00403265
00403265 loc_403265:
00403265 8B 43 08 mov eax, [ebx+vm_state. tmp_REG]
00403268 EB 27 Jmp short loc_403291
00403268 . END OF FUNCTION CHUNK FOR vm_dispatcher

¥

(il (s]) .
00403291 . START OF FUNCTION CHUNK FOR vm_dispatcher Figure 9 // The previous
00403291 vm_handler after
00403291 loc_403291: inserting the
00403291 89 08 mov [eax], ecx vm context structure
00403293 EB EE Jmp short loc_403283 -
00403293 . END OF FUNCTION CHUNK FOR vm_dispatcher

I

ESET's guide to deobfuscating and devirtualizing FinFisher

To illustrate how the analyzed instruction works At this point, we should understand what
when executed, let's consider the vi_params one of the vm_instructions does. The
structure filled as follows: steps we followed should serve as a decent

demonstration of how the entire interpreter

struct vi_params { works.

DWORD ID of virt instr = doesn’t
- = - However, there are some vm_handlers that are

matter;] N)
DWORD OpCode = 0%0C; harder to analyze. This vm’s conditional jumps
DWORD Arg0 = 0x42; are tricky to understand because of the way
DWORD Arg4 = 0; they translate flags.

DWORD Arg8 = 0;
DWORD ArgC = 0;
}; with pushing native EFLAGS (of vm_code) to

the top of the native stack. Therefore, when the

As mentioned before, the vm_dispatcher starts

handler for a respective jump is deciding whether

to jump or not, it looks at EFLAGS at the native
From what was stated above, we can see that

o . . stack and implements its own jump method.
the following instruction will be executed:

Figure 10 illustrates how the virtual JNP handler is

mov [tmp _REG], 0x42 implemented by checking the parity flag.
(Figure 10)
_ ¥
ull a5
00402DAD . START OF FUNCTION CHUNK FOR vm_dispatcher
00402DAD
00402DAD loc_402DAD:
00402DAD 8B 43 2C nnv eax, [ebx+vm_state. ESP0_flags]
00402DB0 EB D9 Jmj short loc_402D8B
00402DB0 . EVD OF FUNCTION CHUNK FOR vm_dispatcher
ull a5
00402D8B : START OF FUNCTION CHUNK FOR vm_dispatcher
00402DBB
00402D8B loc_402D8B:
00402D8B 8B 00 nnv eax, [eax
00402D8D EB 2E jmj short loc_402DBD. parity flag check
00402D8D : EVD OF FUNCTION CHUNK FOR wm_dispatcher
bl ea 5=
00402DBD : START OF FUNCTION CHUNK FOR vm_dispatcher
00402DBD
00402DBD loc_402DBD:
00402DBD A9 04 00 00 00 test eax, 100b . parity flag check
00402DC2 EB BB jmy short loc_402D7F
00402DC2 : EVD OF FUNCTION CHUNK FOR vm_dispatcher
ull a5
00402DTF . START OF FUNCTION CHUNK FOR vm_dispatcher
00402D7F
00402D7F loc_402D7F:
00402D7F 74 21 jz short loc_402DA2
5 L 5 y
ol) 5= il s =
00402D81 EB 14 Jjimj short loc_402D97 00402DA2 ; START OF FUNCTION CHUNK FOR vm dispatcher
00402D81 : EVD OF FUNCTION CHUNK FOR vm_dispatcher] |[00402DA2
00402DA2 loc_402DA2:: jump
‘ 00402DAZ FF 63 18 Jmp [ehx+vn state. jmpLocl]
00402DAZ : END OF FUNCTION CHUNK FOR vm_dispatcher

: START OF FUNCTION CHUNK FOR vm_dispatcher

loc_402D97:: not jump — just next OpCode
jmp [ebx+vm_state. jmpLoc2]
00402D97 ; END OF FUNCTION CHUNK FOR vm dispatcher

Figure 10 // Screenshot of a JNP_handler

16

ESET's guide to deobfuscating and devirtualizing FinFisher

For other virtual conditional jumps, it may be necessary to check several flags — for example, the jump

result of the virtualized JBE depends on the values of both CF and ZF - but the principle stays the

same.

After analyzing all 34 vm_handlers in FinFisher's virtual machine, we can describe its virtual

instructions as follows:

_text:00402ABA VM_table dd offset case 0 _JL locl
text:00402ZABE dd offset case_1_JNP_locl
. text:00402AC2 dd offset case_2_ JLE locl

Ctext:00402AC6 dd offset case 3 vm jcc

.text:00402ACA dd offset case_d4 _exec_native_code: same as case B

. text:0040ZACE dd offset case 5 mov_tmpREGref Arg0: mov [twmpREG], ArgD
.text:00402AD2 dd offset case_6_exec_native_code

_text:00402AD6 dd offset case 7 JZ locl

text:00402ADA dd offset case_8_JG_locl

.text:00402ADE dd offset case_9 _mov_tmpREG_Arg0. mov tmpREG, ArgD
Ctext:00402AEZ dd offset case A zero tmpREG: mov tmpREG, 0
text:00402AE6 dd offset case_B_JS locl

_text:0040ZAEA dd offset case C _mov_tmpREGDeref reg: mov [tmpREG], reg
Ctext:00402AEE dd offset case D mov tmpREG reg

text:00402AF2 dd offset case_E_JB locl

. text:00402AF6 dd offset case_F_JBE locl

_text:00402AFA dd offset case 10 _JNZ locl

. text:00402AFE dd offset case_11_JNO _locl

. text:00402B02 dd offset case_12_wm_call

.text:00402B06 dd offset case_13_mov_tmpREG_reg: mov tmpREG, reg
_text:00402B0A dd offset case 14 JP locl

.text:00402B0E dd offset case_15_mov_treg tmpREG; mov reg, tmpREG

. text:00402B12 dd offset case_16_J0 locl

_text:00402B16 dd offset case 17 JGE locl

_text:00402B1A dd offset case 18 deref tmpREG: mov tmpREG, [tmpREG]
_text:00402B1E dd offset case 19 shl tmpREG Arg0;: shl twpREG, (byte)Argl
_text:00402B22 dd offset case 1A JNS locl

. text:00402B26 dd offset case_1B_JNB_locl

. text:00402B2A dd offset case_1C_push_tmpREG: push tmpREG
text:00402B2E dd offset case 1D JA locl

.text:00402832 dd offset case_lE_add_tmpREG_reg: add tmpREG, reg

. text:004028B36 dd offset case_1F_vm_jmp

Ctext:00402B3A dd offset case 20 add tmpREG arg0

. text:00402B3E dd offset case 21 mov_ tmpREG to ArgODeref: mov [Arg0], REG

Figure 11 // vm_table with all 34 vm_handlers accessed

Please note that the keyword “tmp_REG"

refers to a virtual register used by the virtual
machine —temporary register in the vm_context
structure, while “reg” refers to a native register,
e.g. eax.

Let's have a look at the analyzed instructions
of the virtual machine. For example,
case_3_vm_jcc is a general jump handler that
can execute any native jump, either conditional
or unconditional.

Apparently, this virtual machine does not
virtualize every native instruction — that's where
instructions in cases 4 and 6 come in handy.

These two vm_handlers are implemented to
execute native code directly — all they do is to
read the opcode of a native instruction given as
an argument and execute the instruction.

One more thing to note is that the vm_registers
are always at the top of the native stack, while
the identifier of the register to be used is stored
in the last byte of arg0 of the virtual instruction.
The following code can be used to access the
respective virtual register:

17

ESET's guide to deobfuscating and devirtualizing FinFisher

def resolve_reg(reg_pos):

stack _regs = [‘eax’, ‘ecx’, ‘edx’,

stack _regs.reverse()
return stack_ regs[reg pos]

‘ebx’, ‘esp’, ‘ebp’, ‘esi’, ‘edi’]

reg pos = 7 - (state[arg0] & O0x000000FF)

reg = resolve_reg(reg_pos)

5. Writing your own
disassembler

After we have correctly analyzed all the
vm_instructions, there is still one step to

be done before we can start the analysis

of the sample — we need to write our own
disassembler for the bytecode (parsing it
manually would be problematic due to its size).

By putting in the effort and writing a more
robust disassembler we can save ourselves
some trouble when FinFisher’s virtual machine
is changed and updated.

Let's start with the vm_handler 0xOC, which
executes the following instruction:

mov [tmp_REG], reg

This instruction takes exactly one argument
- the identifier of a native register to be used
as reg. This identifier must be mapped into
a native register name, for instance using a
resolve_reg function as described above.

The following code can be used to dissasemble
thisvm_handler:

def vm_OC(state, vi_params):
global instr
reg pos = 7 - (vi_arams[arg0]
& 0x000000FF)
tmpinstr = “mov [tmp REG],
%s"” % resolve_reg(reg_pos)
instr.append(tmpinstr)
return

Again, vm_handlers for jumps are harder
to understand. In case of jumps, members

vm_context.vi_params.Arg0 and vm_context.

vi_params.Argl store the offset by which to

jump. This “jump offset” is actually an offset in
the bytecode. When parsing jumps, we need to
put a marker to the location to which it jumps.
For example, this code can be used:

def computeLocl(pos, vi_params):
global instr

jmp_offset = (vi_params[arg0]
& OXOOFFFFFF) + (vi_params[argl]
& OxFF000000)

if jmp offset < Ox7FFFFFFF:
jmp_offset /= 0x18 # their
increment by 0x18 is my
increment by 1

else:
jmp_offset = int((-
0x100000000 + jmp_offset)
/ 0x18)

return pos+jmp offset

Finally, there is a vm_handler responsible for
executing native instructions from arguments,
which needs special treatment. For this, we
have to use a disassembler for native x86
instructions — for example, the open source tool
Distorm.

The length of an instruction is stored in
vm_context.vi_params.OpCode & 0xO000FFO0O.
The opcode of the native instruction that

will be executed is stored in the arguments.

The following code can be used to parse the
vm_handler that executes native code:

18

ESET's guide to deobfuscating and devirtualizing FinFisher

def vm_04(vi_params, pos):
global instr

nBytes = vi_params[opCode] & O0x0000FFO00

dyn_instr = pack(“<LLLL”, vi_params[arg0], vi_params[arg4],
vi_params[arg8], vi_params[argC])[0:nBytes]

dec_instr = distorm3.Decode(0x0, dyn_instr, distorm3.Decode32Bits)

tmpinstr = “%s” % (dec_instr[0][2])
instr.append(tmpinstr)
return

Up to this point, we have created Python
functions to disassemble each vm_handler. All
of these, combined with the code responsible
for marking jump locations, finding the ID of
a virtual instruction after the call and a few
others, are necessary for writing your own
disassembler.

Afterwards, we can run the finished
disassembler on the bytecode.

BE Hiew: unpacked_decrypted_bytecode
un-ackedAdecr -tedlb tecodg § IFRO ———————-) aea3D4:

Q@ 2
RO3DRES:
PRO3DOF8:
PRR3D108:
PRR3D118:

PRE3D128:
PRE3D138:
PRE3D148:
PRE3D158:
pRe3D168:

Figure 12 // Part of the unpacked and decrypted FinFisher bytecode

For example, from the part of the bytecode
shown in , we may get the following
output:

mov tmp_REG, O

add tmp_REG, EBP

add tmp_REG, 0x10

mov tmp REG, [tmp_REG]
push tmp REG

mov tmp_REG, EAX

push tmp REG

19

ESET's guide to deobfuscating and devirtualizing FinFisher

6. Understanding the
implementation of
this virtual machine

After we have analyzed all the virtual handlers
and constructed a custom disassembler, we can
have one more look at the virtual instructions to
get an overall idea of how they were created.

First, we must understand that the virtualization
protection was implemented at the assembly
level. The authors translated native instructions
into their own, somewhat complicated
instructions, which are to be executed by a
custom virtual CPU. To achieve this, a temporary
“register” (tmp_REG) is used.

We can look at some examples to see how
this translation works. For example, the virtual
instruction from the previous example —

mov tmp_ REG, EAX
push tmp REG

- was translated from the original native
instruction push eax. When virtualized, a
temporary register was used in an intermediate
step to change the instruction into something
more complicated.

Let's consider another example:

mov tmp_ REG, O
add tmp_REG, EBP

add tmp_REG, 0x10

mov tmp_ REG, [tmp_ REG]
push tmp REG

The native instructions that were translated into
these virtualized instructions were the following
(with reg being one of the native registers):

mov reg, [ebp+0x10]
push reg

This is, however, not the only way to virtualize
a set of instructions. There are other virtual
machine protectors with other approaches. For
instance, one of the commercial vm protectors
translates each math operation instruction

into NOR logic, with a number of temporary
registers being used instead of one.

Conversely, FinFisher's virtual machine did not
go as far as to cover all the native instructions.
While many of them can be virtualized, some
can't - math instructions, such as add, imul and
div, being some examples. If these instructions
appear in the original binary, the vm_handler
responsible for executing native instructions is
called to handle them in the protected binary.
The only change is that EFLAGS and native
registers are popped from the native stack just
before the native instruction is executed, and
pushed back after it is executed. This is how the
virtualization of every native instruction was
avoided.

A significant drawback of protecting binaries
with a virtual machine is the performance
impact. In the caseof FinFisher’s virtual
machine, we estimate it to be more than one
hundred times slower than native code, based
on the number of instructions that have to be
executed to handle every single vm_instruction
(vm_dispatcher + vm_handler).

Therefore, it makes sense to protect only
selected parts of the binary— and this is also the
case in the FinFisher samples we analyzed.

Moreover, as mentioned before, some of

the virtual machine handlers can call native
functions directly. As a result, the users of the
virtual machine protection (i.e. the authors

of FinFisher) can look at the functions at the
assembly level and mark which of them are

to be protected by the virtual machine. For
those that are marked, their instructions will be
virtualized, for those that are not, the original
functions will be called by the respective virtual
handler. Thus, the execution might be less time-
consuming while the most interesting parts of
the binary stay protected. (Figure 13)

ESET's guide to deobfuscating and devirtualizing FinFisher

VIRTUAL
FUNCTION1

VIRTUAL
FUNCTION N

VM_START

VM_DISPATCH

B VM_HANDLER N

VM_LOOP

NON-VIRTUAL
FUNCTION1

NON-VIRTUAL
FUNCTION N

Figure 13 // Scheme representing FinFisher’s entire vm protection and how the execution can jump out of the vm

7. Automating the
disassembly process
for more FinFisher
samples

In addition to the length of the bytecode our
parser has to process, we have to keep in mind
that there is some randomization across various
FinFisher samples. Although the same virtual
machine has been used for the protection, the
mapping between the virtual opcodes and the
vm_handlers is not always constant. They can
be (and are) paired randomly and differently
for each of the FinFisher samples we analyzed.
It means that if the vm_handIer for the 0x5
virtual opcode in this sample handles the mov
[tmp_REG], argo instruction, it may be
assigned a different virtual opcode in another
protected sample.

To address this issue, we can use a signature
for each of the analyzed vm_handlers. The
IDA Python script in Appendix A can be applied
after we have generated a graph as shown in
Figure 7 (it is particularly important to have
the jz/jnz jump obfuscation eliminated - as
described in the first section of this guide) to
name the handlers based on their signatures.
(With a small modification, the script can also

be used to recreate the signatures in case the
vm_handlers are changed in a future FinFisher
update.)

As mentioned above, the first vm_handler
in the FinFisher sample you analyze may be
different than JL, as in the example FinFisher
sample, but the script will identify all of the
vm_handlers correctly.

8. Compiling
disassembled code
without the VM

After disassembly and after a few
modifications, it is possible to compile the
code. We will treat virtual instructions as native
instructions. As a result, we will get a pure
binary without the protection.

Most of the vm_instructions can be compiled
immediately using copy-paste, since the output
of our disassembler mostly consists of native-
looking instructions. But some cases need
special treatment:

e tmp_REG - since we defined tmp_REG as
a global variable, we need to make code
adjustments for cases when an address
stored in it is being dereferenced. (Since

ESET's guide to deobfuscating and devirtualizing FinFisher

dereferencing an address which is in a global
variable is not possible in the x86 instruction
set.) For example, the vm contains the virtual
instruction mov tmp_REG, [tmp_REG] which
needs to be rewritten as follows:

push eax

mov eax, tmp REG
mov eax, [eax]
mov tmp_REG, eax
pop eax

* Flags - Virtual instructions do not change
the flags, but native math instructions do.
Therefore, we need to make sure that virtual
math instruction won't change flags in the
devirtualized binary either, which means
we have to save flags before executing
this instruction and restore them after the
execution.

e Jumps and calls — we have to put a marker to
the destination virtual instruction (jumps) or
function (calls).

e API function calls — in most cases, API
functions are loaded dynamically, whereas
in others they are referenced from the IAT of
the binary, so these cases need to be handled
accordingly.

 Global variables, native code — Some global
variables need to be kept in the devirtualized
binary. Also in the FinFisher dropper, there is a
function for switching to x64 from x86 that is
executed natively (actually it is done only with
the retf instruction). All these must be kept
in the code when compiling.

Depending on the output of your disassembler,
you may still need to do a few more
modifications to get pure native instructions
that can be compiled. Then, you can compile the
code with your favorite assembly-compiler into
a binary without the VM.

22

ESET's guide to deobfuscating and devirtualizing FinFisher

CONCLUSION

In this guide, we have described how FinFisher
uses two elaborate techniques to protect

its main payload. The primary intention of
this protection is not to avoid AV detection,
but to cover the configuration files and new
techniques implemented in the spyware by
hindering analysis by reverse engineers. As

no other detailed analysis of the obfuscated
FinFisher spyware has been published to date,
it seems the developers of these protection
mechanisms have been successful.

We have shown how we can overcome the
anti-disassembly layer automatically, and how
the virtual machine can be efficiently analyzed.

We hope this guide can help reverse engineers
analyze vm-protected FinFisher samples, as
well to better understand other virtual machine
protectors in general.

ESET's guide to deobfuscating and devirtualizing FinFisher

Appendix A

IDA Python script for naming
FinFisher vm_handlers

The script is also available on ESET's GitHub repository:
https://github.com/eset/malware-research/blob/master/finfisher/ida_finfisher_vm.py

import sys

SIGS = { ‘8d4b408b432c8b0a90800£95c2a980000£95c03ac275f£f631c’ : ‘case_0_JL
_locl’, *8d4b408b432c8b0a9400074ff631c’ : ‘case_1 JNP_locl’, ‘8d4b408b432c
8b0a94000075a290800£95¢c2a980000£95c03ac275f£f631c’ : ‘case_2_ JLE locl’, ‘8d4
b408b7b508b432c83e02£8dbc38311812b5¢c787cfe7ed4ae92£8b066c787d3e7e

4af9b8e80000588d80" : ‘case_3_vm_jcc’, ‘8b7b508b432c83e02£3f85766c77ac6668
137316783¢c728d7340£fb64b3df3a4c67e98037818b43c89471c64756c80775a£83318588b6
32c’ : ‘case_4 exec_native code’, ‘8d4b408b98b438898833188b43c8b632c’ : ‘c
ase_5_mov_tmp_REGref_ _arg0’, ‘8b7b508b432c83e02f3f85766c77ac6668137316783c7
28d7340fb64b3df3a4c67e98037818b43c89471c64756c80775a£83318588b632¢c’ : ‘cas
e_6_exec_native code’, ‘8d4b408b432c8b0a94000075£f631c’ : ‘case_7_JZ_locl’
, '8d4b408b432c8b0a94000075a90800£95c2a980000£95c03ac275£f£6318’ : ‘case_8__
JG_locl’, ‘8d43408b089438833188b43c8b632c’ : ‘case_9 _mov_tmp REG_arg0’, ‘3
3c9894b8833188b632c8b43¢c’ : ‘case A zero_tmp REG’, ‘8d4b408b432c8b0a980000
75£f£f631c’ : ‘case_B JS_locl’, ‘8d4b40fb69b870002bc1l8b4b2c8b548148b4b889118
33188b43c8b632c’ : ‘case_C_mov_tmp REGDeref tmp REG’, ‘8d4b40fb69b870002bc
18b4b2c8b4481489438833188b43c8b632c’ : ‘case D mov_tmp REG tmp REG’, ‘8d4b
408b432c8b0a9100075f£f631c’ : ‘case_E_JB_locl’, ‘8d4b408b432c8b0a9100075a94
000075ff631c’ : ‘case_F _JBE locl’, ‘8d4b408b432c8b0a%94000074ff631c’ : ‘cas
e 10 _JNZ_locl’, ‘8d4b408b432c8b0a9080074ff631c’ : ‘case_ 11 _JNO locl’, ‘8b7
b50834350308d4b408b414343285766c773£50668137a231c6472c280772aa8d57d83c7389
1783e£f3c7477a300080777cb83c7889783e£8c647c£28077¢c3183¢c7dc67688b383c0188947
183c7566¢c7777£fe668137176283c72c672d803745895£183¢c75¢c67848037df478b4314c674
08037288947183¢c75¢c67928037515£8b632c’ : ‘case_12 vm call’, ‘8d4b40b870002b
18b532c8b4482489438833188b43c8b632c’ : ‘case_13_mov_tmp_ REG_tmp_ REG_notRly
', '8d4b408b432c8b0a9400075ff631c’ : ‘case_14 JP_locl’, ‘8d4b40fb69b870002
bc18b4b2c8b5388954814833188b43c8b632¢c’ : ‘case_15 mov_tmp REG_tmp REG’, ‘8
d4b408b432c8b0a9080075f£f631c’ : ‘case_16_JO locl’, ‘8d4b408b432c8b0a90800f
95c2a980000£95¢c03ac274f£f631c’ : ‘case_17_ JGE_locl’, ‘8b4388b089438833188b4
3c8b632c’ : ‘case_18_ deref tmp REG’, ‘8d4b408b4388b9d3e089438833188b43c8b6
32c’ : ‘case_19_shl tmp REG_arg0l’, ‘8d4b408b432c8b0a98000074ff631c’ : ‘ca
se_ 1A JNS_locl’, ‘8d4b408b432c8b0a9100074ff631c’ : ‘case 1B _JNB locl’, ‘8b
7b2c8b732c83e£f4b924000£fcf3a4836b2c48b4b2c8b438894124833188b43¢c8b632C’ : ‘cC
ase_1C_push_tmp REG’, ‘8d4b408b432c8b0a94000075a9100075££6318’ : ‘case_1D
JA _locl’, ‘8d4b40b870002b18b532c8b448241438833188b43c8b632¢c’ : ‘case_1E ad
d_stack _val_ to_tmp REG’, ‘8b7b508343503066c77ac3766813731565783c728d4b40c6
72e803746£fb6433d3c783c058947183c758d714fb64b3df3a45ac671280377a8b383c01889
47183¢c7566c777£306681371fac83¢c72¢c671£803777895£183¢c75¢c677080372b47¢c6798037
618b4b14894£183c75c67778037b48b632c8d12’ : ‘case_1F _vm jmp’, ‘8d4b408b914b

8833188b43c8b632c’ : ‘case 20 add arg0_to tmp REG’, ‘8d4b408b98b4388918331
88b632c8b43c’ : ‘case_21_mov_tmp_REG_to_argODereferenced’ }
SWITCH = 0 # addr of jmp dword ptr [eax+ecx*4] (jump to vm handlers)

SWITCH_SIZE = 34
sig = []
def append_bytes(instr, addr):

for j in range(instr.size):
sig.append(Byte(addr))

https://github.com/eset/malware-research/blob/master/finfisher/ida_finfisher_vm.py

24 ESET's guide to deobfuscating and devirtualizing FinFisher

addr += 1
return addr

def makeSigName(sig_name, vm_handler):
print “naming %x as %s” % (vm_handler, sig_name)
MakeName(vm_handler, sig_name)
return

if SWITCH ==
print “First specify address of switch jump - jump to vm _handlers!”
sys.exit(1l)

for i in range(SWITCH_SIZE):

addr = Dword(SWITCH+i*4)
faddr = addr

sig = []
while 1:

instr = DecodeInstruction(addr)

if instr.get_canon mnem() == “jmp” and (Byte(addr) == Oxeb or Byte
(addr) == 0xe9):
addr = instr.Opl.addr
continue
if instr.get_canon _mnem() == “jmp” and Byte(addr) == Oxff and Byte
(addr+1) == 0x63 and (Byte(addr+2) == 0x18 or Byte(addr+2) == 0x1C):
addr = append_bytes(instr, addr)
break
if instr.get_canon mnem() == “jmp” and Byte(addr) == Oxff:
break
if instr.get_canon mnem() == “jz”:

sig.append(Byte(addr))
addr += instr.size
continue
if instr.get_canon mnem() == “jnz”:
sig.append(Byte(addr))
addr += instr.size
continue
if instr.get_canon mnem() == “nop”:
addr += 1
continue
addr = append_bytes(instr, addr)

sig str = “”.join([hex(1l)[2:] for 1 in sig])
hsig = ‘’.join(map(chr, sig)).encode(“hex")

for key, value in SIGS.iteritems():

if len(key) > len(sig_str):
if key.find(sig_str) >= 0:
makeSigName(value, faddr)
else:
if sig_str.find(key) >= 0:
makeSigName(value, faddr)

