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Thanks to its strong anti-analysis measures, the 

FinFisher spyware has gone largely unexplored. 

Despite being a prominent surveillance tool, 

only partial analyses have been published on its 

more recent samples.

Things were put in motion in the summer 

of 2017 with ESET’s analysis of FinFisher 

surveillance campaigns that ESET had 

discovered in several countries. In the course of 

our research, we have identified campaigns where 
internet service providers most probably played 

the key role in compromising the victims with 

FinFisher.

When we started thoroughly analyzing this 

malware, the main part of our effort was 

overcoming FinFisher’s anti-analysis measures 

in its Windows versions. The combination 

of advanced obfuscation techniques and 

proprietary virtualization makes FinFisher very 

hard to de-cloak.

To share what we learnt in de-cloaking this 

malware, we have created this guide to help 

others take a peek inside FinFisher and analyze 

it. Apart from offering practical insight into 

analyzing FinFisher’s virtual machine, the 

guide can also help readers to understand 

virtual machine protection in general – that 

is, proprietary virtual machines found inside a 

binary and used for software protection. We 

will not be discussing virtual machines used in 

interpreted programming languages to provide 

compatibility across various platforms, such as 

the Java VM.

We have also analyzed Android versions of 

FinFisher, whose protection mechanism is based 

on an open source LLVM obfuscator. It is not as 

sophisticated or interesting as the protection 

mechanism used in the Windows versions, thus 

we will not be discussing it in this guide.

Hopefully, experts from security researchers to 

malware analysts will make use of this guide to 

better understand FinFisher’s tools and tactics, 

and to protect their customers against this 

omnipotent security and privacy threat.

INTRODUCTION

https://www.welivesecurity.com/2017/09/21/new-finfisher-surveillance-campaigns/
https://www.welivesecurity.com/2017/09/21/new-finfisher-surveillance-campaigns/
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ANTI-
DISASSEMBLY

When we open a FinFisher sample in IDA Pro, 

the first protection we notice in the main 

function is a simple, yet very effective, anti-

disassembly trick.

FinFisher uses a common anti-disassembly 

technique – hiding the execution flow by 

replacing one unconditional jump with two 

complementary, conditional jumps. These 

conditional jumps both target the same 

location, so regardless of which jump is made, 

the same effective code execution flow results. 

The conditional jumps are then followed by 

garbage bytes. These are meant to misdirect the 

disassembler, which normally will not recognize 

that they are dead code, and will steam on, 

disassembling garbage code.

What makes this malware special is the way 

in which it uses this technique. In most other 

malware we’ve analyzed, it is only used a few 

times. FinFisher, however, uses this trick after 

every single instruction. 

This protection is very effective at fooling the 

disassembler – many parts of the code aren’t 

disassembled properly. And of course, it is 

impossible to use the graph mode in IDA Pro. 

Our first task will be to get rid of this anti-

disassembly protection.

The code was clearly not obfuscated manually 

but with an automated tool and we can observe 

a pattern in all the jump pairs.

There are two different types of jump pairs – 

near jump with a 32-bit offset and short jump 

with an 8-bit offset.

The opcodes of both conditional near jumps 

(with a dword as a jump offset) start with a 

0x0F byte; while the second bytes are equal 

to 0x8?, where ? in both jump instructions 

differs only by 1 bit. This is because x86 opcodes 

for complementary jumps are numerically 

consecutive. For example, this obfuscation 

scheme always pairs JE with JNE (0x0F 0x84 vs 

0x0F 0x85 opcodes), JP with JNP (0x0F 0x8A vs 

0x0F 0x8B opcodes), and so on.

These opcodes are then followed by a 32-

bit argument specifying the offset to the 

destination of the jump. Since the size of 

both instructions is 6 bytes, the offsets in two 

consequent jumps differ exactly by 6. (Figure 1)

Figure 1 //  Screenshot showing instructions followed by two conditional near jumps every time
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For example, the code below can be used to detect two of these consecutive conditional jumps:

def is_jump_near_pair(addr):
jcc1 = Byte(addr+1)
jcc2 = Byte(addr+7)
# do they start like near conditional jumps?
if Byte(addr) != 0x0F || Byte(addr+6) != 0x0F:
 return False
# are there really 2 consequent near conditional jumps?
if (jcc1 & 0xF0 != 0x80) || (jcc2 & 0xF0 != 0x80):
 return False
# are the conditional jumps complementary?
if abs(jcc1-jcc2) != 1:
 return False
# do those 2 conditional jumps point to the same destination?
dst1 = Dword(addr+2)
dst2 = Dword(addr+8)
if dst1-dst2 != 6:
 return False
return True

Deobfuscation of short jumps is based on the 

same idea, only the constants are different.

The opcode of a short conditional jump equals 

0x7?, and is followed by one byte – the jump 

offset. So again, when we want to detect two 

consecutive, conditional near jumps, we have to 

look for opcodes: 0x7?; offset; 0x7? ± 1; offset -2. 

The first opcode is followed by one byte, which 

differs by 2 in two consequent jumps (which is, 

again, the size of both instructions). (Figure 2)

For example, this code can be used to detect 

two conditional short jumps:

After detecting one of these conditional jump 

pairs, we deobfuscate this code by patching the 

first conditional jump to unconditional (using 

the 0xE9 opcode for the near jump pairs and 

0xEB for the short jump pairs) and patch the 

rest of the bytes with NOP instructions (0x90) 

In addition to these two cases, there might be 

some places where a jump pair consists of a 

short and a near jump, rather than two jumps of 

the same category. However, this only occurs in 

a few cases in the FinFisher samples and can be 

fixed manually.

With these patches made, IDA Pro starts to 

“understand” the new code and is ready (or at 

least almost ready) to create a graph. It may be 

the case that we still need to make one more 

improvement: append tails, i.e. assign the node 

with the destination of the jump to the same 

def is_jcc8(b):
return b&0xF0 == 0x70

def is_jump_short_pair(addr):
jcc1 = Byte(addr)
jcc2 = Byte(addr+2)
if not is_jcc8(jcc1) || not 

is_jcc8(jcc2):
 return False
if abs(jcc2–jcc1) != 1:
 return False
dst1 = Byte(addr+1)
dst2 = Byte(addr+3)
if dst1 – dst2 != 2:
 return False
return True

def patch_jcc32(addr):
PatchByte(addr, 0x90)
PatchByte(addr+1, 0xE9)
PatchWord(addr+6, 0x9090)
PatchDword(addr+8, 

0x90909090)
def patch_jcc8(addr):

PatchByte(addr, 0xEB)
PatchWord(addr+2, 0x9090)
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graph where the node with the jump instruction 

is located. For this, we can use the IDA Python 

function append_ func_ tail.

The last step of overcoming the anti-disassembly 

tricks consists of fixing function definitions. It may 

still occur that the instruction after the jumps is 

push ebp, in which case IDA Pro (incorrectly) 

treats this as the beginning of a function and 

creates a new function definition. In that case, we 

have to remove the function definition, create the 

correct one and append tails again.

This is how we can get rid of FinFisher’s first 

layer of protection – anti-disassembly. 

Figure 2 // Examples of instructions followed by two conditional short jumps every time
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F INFISHER’S  
VIRTUAL 
MACHINE

After a successful deobfuscation of the first 

layer, we can see a clearer main function whose 

sole purpose is to launch a custom virtual 

machine and let it interpret the bytecode with 

the actual payload.

As opposed to a regular executable, an 

executable with a virtual machine inside uses 

a set of virtualized instructions, rather than 

directly using the instructions of the processor. 

Virtualized instructions are executed by a 

virtual processor, which has its own structure 

and does not translate the bytecode into a 

native machine code. This virtual processor as 

well as the bytecode (and virtual instructions) 

are defined by the programmer of the virtual 

machine. (Figure 3)

As mentioned in the introduction, a well-known 

example of a virtual machine is the Java Virtual 

Machine. But in this case, the virtual machine 

is inside the binary, so we are dealing with a 

virtual machine used for a protection against 

reverse engineering. There are well-known 

commercial virtual machine protectors, for 

example VMProtect or Code Virtualizer.

The FinFisher spyware was compiled from 

source code and the compiled binary was 

then protected with a virtual machine at the 

Figure 3 // Bytecode interpreted by the virtual CPU

assembly level. The protection process includes 

translating instructions of the original binary 

into virtual instructions and then creating a 

new binary that contains the bytecode and the 

virtual CPU. Native instructions from the original 

binary are lost. The protected, virtualized 

sample must have the same behavior as a non-

protected sample.

To analyze a binary protected with a virtual 

machine, one needs to:

1. Analyze the virtual CPU.

2. Write one’s own disassembler for this custom 

virtual CPU 

 and parse the bytecode.

3. Optional step: compile the disassembled code 

into a binary file to  

get rid of the virtual machine.

The first two tasks are very time-consuming, 

and the first one can also get quite difficult. 

It includes analyzing every vm_ handler and 

understanding how registers, memory access, 

calls, etc. are translated.
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Terms and def initions
There is no standard for naming particular parts 

of a virtual machine. Hence, we will define some 

terms which will be referenced throughout the 

whole paper.

• Virtual machine (vm) – custom, virtual CPU; 

contains parts like the  

vm_ dispatcher, vm_ start, vm_ handlers

• vm_ start – the initialization part; memory 

allocation and decryption routines are 

executed here

• Bytecode (also known as pcode) – virtual 

opcodes of vm_ instructions with their 

arguments are stored here

• vm_ dispatcher – fetches and decodes virtual 

opcode; is basically a preparation for the 

execution of one of the vm_ handlers

• vm_ handler – an implementation of a 

vm_ instruction; executing one vm_ handler 
means executing one vm_ instruction

• Interpreter (also known as vm_ loop) – 

vm_ dispatcher + vm_ handlers – the virtual 

CPU

• Virtual opcode – an analog of the native 

opcode

• vm_ context (vm_ structure) – an internal 

structure used by the interpreter

• vi_ params – a structure in the vm_ context 
structure; the virtual instruction parameters, 

used by the vm_ handler; it includes the  

vm_ opcode and arguments

When interpreting the bytecode, the virtual 

machine uses a virtual stack and a single virtual 

register.

• vm_ stack – an analog of a native stack, which 

is used by the virtual machine

• vm_ register – an analog of a native register, 

used by this virtual machine; further 

referenced as tmp_ REG

• vm_ instruction – an instruction defined 

by developers of vm; the body (the 

implementation) of the instruction is called its 

vm_ handler

In the following sections, we will describe the 

parts of the virtual machine in more technical 

detail and explain how to analyze them.

A deobfuscated graph of the main malware 

function consists of three parts – an 

initialization part and two other parts which 

we have named vm_ start and interpreter 

(vm_ dispatcher + vm_ handlers).

The initialization part specifies a unique 

identifier of what could be interpreted as a 

bytecode entry point, and pushes it on the stack. 

Then, it jumps to the vm_ start part that is an 

initialization routine for the virtual machine 

itself. It decrypts the bytecode and passes 

control to the vm_ dispatcher that loops over 

the virtual instructions of the bytecode and 

interprets them using the vm_ handlers .

The vm_ dispatcher starts with a pusha 

instruction and ends with a jmp dword ptr 

[eax+ecx*4] instruction (or similar), which is a 

jump to the relevant vm_ handler .

Vm_ start
The graph created after the deobfuscation of 

the first layer is seen in Figure 4. The vm_ start 
part is not so important for the analysis of the 

interpreter. However, it can help us understand 

the whole implementation of the vm; how it 

uses and handles virtual flags, virtual stack, etc. 

The second part – the vm_ dispatcher with 

vm_ handlers – is the crucial one.

The vm_ start is called from almost every 

function, including the main function. The calling 

function always pushes a virtual instruction 

identifier and then it jumps to vm_ start . Every 

virtual instruction has its own virtual identifier. 

In this example, the identifier of the virtual 

entry point, where the execution from the main 

function starts, is 0x21CD0554. (Figure 5)

In this part, there is a lot of code for preparing 

the vm_ dispatcher – mainly for preparing 

the bytecode and allocating memory for the 
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whole interpreter. The most important parts of the code do the 

following:

1. Allocate 1MB with RWX permission for bytecode and a few 

more variables.

2. Allocate 0x10000 bytes RWX for local variables in the virtual 

machine for the current thread – the vm_ stack .

3. Decrypt a piece of code using an XOR decryption routine. The 

decrypted code is an aPLib unpacking routine.

The XOR decryption routine used in the sample is a slightly 

modified version of XOR dword, key routine. Actually, it skips 

the first of the six dwords and then XORs only the remaining 

5 dwords with the key. Following is the algorithm for the 

routine (further referred to as XOR decryption_ code):

4. Call aPLib unpacking routine to unpack bytecode. After 

unpacking, virtual opcodes are still encrypted. (Figure 6)

Preparing virtual opcodes (step 1, 3 and 4) is done only once – 

at the beginning – and is skipped in subsequent executions of 

vm_ start , when only instructions for proper handling of flags 

and registers are executed.
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int array[6];

int key;

for (i = 1; i < 6; i++) {

 array[i] ^= key;

}

Figure 5 //  vm_start is called from each of the 119 virtualized functions. 
The ID of the first virtual instruction of the respective function 
is given as an argument.
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Figure 6 //  All the code from the vm_start to the vm_dispatcher in grouped nodes named based on their purpose.

FINFISHER’S 
INTERPRETER

This part includes the vm_ dispatcher with all 

the vm_ handlers (34 in FinFisher samples) and 

is crucial for analyzing and/or devirtualizing the 

virtual machine. The interpreter executes the 

bytecode.

The instruction jmp dword ptr [eax+ecx*4] 

jumps to one of the 34 vm_ handlers . Each 

vm_ handler implements one virtual machine 

instruction. In order to know what every 

vm_ handler does, we first need to understand 

the vm_ context and vm_ dispatcher .

1 .  Creating an IDA graph
Before diving into it, creating a well-structured 

graph can really help understanding the 

interpreter. We recommend splitting the 

graph into two parts – the vm_ start and the 

vm_ dispatcher , i.e. to define a beginning of a 

function at the vm_ dispatcher’s first instruction. 

What is still missing is the actual vm_ handlers 

referenced by the vm_ dispatcher . In order to 

connect these handlers with the graph of the 
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vm_ dispatcher , the following functions can be 

used:

AddCodeXref(addr_ of_ jmp_ instr,  

vm_handler,XREF_USER|fl_JN)

adding references from the last vm_ dispatcher 
instruction to the beginnings of the 

vm_ handlers

AppendFchunk

appending tails again

After appending every vm_ handler to the 

dispatcher function, the resulting graph should 

look like (Figure 7)

Figure 7 // Graph of the vm_dispatcher with all 34 vm_handlers .

2.  Vm_ dispatcher
This part is responsible for fetching and 

decoding the bytecode. It performs the 

following steps:

• Executes pusha and pusf instructions to 

prepare virtual registers and virtual flags for 

further execution of a virtual instruction.

• Retrieves the base address of the image and 

address of vm_ stack

• Reads 24 bytes of bytecode specifying the 

next vm_ instruction 
and its arguments



ESET’s guide to deobfuscating and devirtualizing FinFisher12

• Decrypts the bytecode with the previously 

described XOR decryption routine

• Adds the image base to the bytecode 

argument in case the argument is a global 

variable

• Retrieves the virtual opcode (number 0-33) 

from the decrypted bytecode

• Jumps to the corresponding vm_ handler 
which interprets the virtual opcode

After the vm_ handler for an instruction has 

executed, the same sequence of steps is 

repeated for the next one, starting from the 

vm_ dispatcher’s first instruction.

In the case of the vm_ call handler, the control 

is passed to the vm_ start part instead (except 

for instances when a non-virtualized function 

follows).

3.  Vm_ context
In this part, we will describe the vm_ context 
– a structure used by the virtual machine, 

containing all the information necessary 

for executing the vm_ dispatcher and each 

vm_ handler .

When looking at the code of both the 

vm_ dispatcher and the vm_ handlers in greater 

detail, we can notice there are a lot of data 

operation instructions, referring to ebx+offset, 

where offset is a number from 0x00 to 0x50. 

In Figure 8, we can see what the main part of 

vm_ handler 0x05 in one FinFisher sample looks 

like. (Figure 8)

Figure 8 // Screenshot of one of the vm_handlers
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The ebx register points to a structure we named 

vm_ context . We must understand how this 

structure is used – what the members are, what 

they mean, and how they are used. When solving 

this puzzle for the first time, a bit of guessing 

is needed as to how the vm_ context and its 

members are used.

For example, let’s have a look at the sequence of 

instructions at the end of the vm_ dispatcher:

Since we know that the last instruction is a 

jump to a vm_ handler , we can conclude that 

ecx contains a virtual opcode and thus the 

0x3C member of a vm_ struct refers to a virtual 

opcode number.

Let’s make one more educated guess. At the end 

of almost every vm_ handler, 

struct vm_context {

DWORD vm_instruct_ptr; // instruction pointer to the bytecode

DWORD vm_stack; // address of the vm_stack

DWORD tmp_REG; // used as a “register” in the virtual machine

DWORD vm_dispatcher_loop; // address of the vm_dispatcher

DWORD cleanAndVMDispatchFn; // address of the function which pops values and jumps 

tothevm_dispatcherskippingthefirstfewinstructionsfromit

DWORD cleanUpDynamicCodeFn; // address of the function which cleans vm_instr_ptr and 

calls cleanAndVMDispatchFn

DWORD jmpLoc1; // address of jump location

DWORD jmpLoc2; // address of next vm_opcode – just executing next vm_instruction

DWORD Bytecode_start; // address of the start of the bytecode in data section

DWORD DispatchEBP;

DWORD ImageBase; // Image base address

DWORDESP0_flags;//topofthenativestack(therearesavedflagsofthevm_code)

DWORDESP1_flags;//sameasprevious

DWORD LoadVOpcodesSectionFn;

vi_params bytecode; // everything necessary for executing vm_handler, see below

DWORD limitForTopOfStack; // top limit for the stack

};

movzx ecx, byte ptr [ebx+0x3C]  

// opcode for vm_handler

jmp dword ptr [eax+ecx*4]  

// jumping to one of the 34 vm_

handlers

there is the following instruction:

add dword ptr [ebx], 0x18.

This same member of the vm_ context was 

also used earlier in the vm_ dispatcher’s 

code – just before jumping to a vm_ handler . 

The vm_ dispatcher copies 24 bytes from 

the structure member to a different location 

([ebx+38h]) and decrypts it with the XOR 

decryption routine to obtain a part of the actual 

bytecode.

Hence, we can start thinking of the first 

member of the vm_ context ([ebx+0h]) as a 

vm_ instruction_ pointer , and of the decrypted 

location (from [ebx+38h] to [ebx+50h]) as an 

ID of a virtual instruction, its virtual opcode and 

arguments. Together, we will call the structure 

vi_ params .

Following the steps described above, and using 

a debugger to see what values are stored in the 

respective structure members, we can figure 

out all the members of the vm_ context .

After the analysis, we can rebuild both 

FinFisher’s vm_ context and vi_ params 

structure:
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struct vi_params {

DWORD Virtual_instr_id;

DWORD OpCode; // values 0 – 33 -> tells which handler to execute

DWORD Arg0; // 4 dword arguments for vm_handler

DWORD Arg4; // sometimes unused

DWORD Arg8; // sometimes unused

DWORD ArgC; // sometimes unused

};

4.  Virtual  instruction 
implementations – 
vm_ handlers

Each vm_ handler handles one virtual opcode 

– since we have 34 vm_ handlers , there 

are at most 34 virtual opcodes. Executing 

one vm_ handler means executing one 

vm_ instruction , so in order to reveal what a 

vm_ instruction does, we need to analyze the 

corresponding vm_ handler.

After reconstructing the vm_ context and 

naming all the offsets from ebx, the previously 

shown vm_ handler changes to a much more 

readable form, as seen in Figure 9.

At the end of this function, we notice a 

sequence of instructions, starting with the 

vm_ instruction_ pointer, being incremented 

by 24 – the size of each vm_ instruction’s 

vi_ params structure. Since this sequence 

is repeated at the end of almost every 

vm_ handler, we conclude it is a standard 

function epilogue and the actual body of the 

vm_ handler can be written as simply as:

mov [tmp_ REG], Arg0

So, there we go – we have just analyzed the 

first instruction of the virtual machine. :-) 

Figure 9 // The previous 
vm_handler after 
inserting the  
vm_context structure
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To illustrate how the analyzed instruction works 

when executed, let’s consider the vi_ params 

structure filled as follows:

From what was stated above, we can see that 

the following instruction will be executed:

mov [tmp_ REG], 0x42

Figure 10 // Screenshot of a JNP_handler

struct vi_params {
DWORD ID_of_virt_instr = doesn’t 
matter;
DWORD OpCode = 0x0C;
DWORD Arg0 = 0x42;
DWORD Arg4 = 0;
DWORD Arg8 = 0;
DWORD ArgC = 0;
};

At this point, we should understand what 

one of the vm_ instructions does. The 

steps we followed should serve as a decent 

demonstration of how the entire interpreter 

works.

However, there are some vm_ handlers that are 

harder to analyze. This vm’s conditional jumps 

are tricky to understand because of the way 

they translate flags.

As mentioned before, the vm_ dispatcher starts 

with pushing native EFLAGS (of vm_ code) to 

the top of the native stack. Therefore, when the 

handler for a respective jump is deciding whether 

to jump or not, it looks at EFLAGS at the native 

stack and implements its own jump method. 

Figure 10 illustrates how the virtual JNP handler is 

implemented by checking the parity flag.  

(Figure 10)
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For other virtual conditional jumps, it may be necessary to check several flags – for example, the jump 

result of the virtualized JBE depends on the values of both CF and ZF – but the principle stays the 

same.

After analyzing all 34 vm_ handlers in FinFisher’s virtual machine, we can describe its virtual 

instructions as follows:

Figure 11 // vm_table with all 34 vm_handlers accessed

Please note that the keyword “tmp_ REG” 

refers to a virtual register used by the virtual 

machine –temporary register in the vm_ context 
structure, while “reg” refers to a native register, 

e.g. eax.

Let’s have a look at the analyzed instructions 

of the virtual machine. For example, 

case_ 3_ vm_  jcc is a general jump handler that 

can execute any native jump, either conditional 

or unconditional.

Apparently, this virtual machine does not 

virtualize every native instruction – that’s where 

instructions in cases 4 and 6 come in handy. 

These two vm_ handlers are implemented to 

execute native code directly – all they do is to 

read the opcode of a native instruction given as 

an argument and execute the instruction.

One more thing to note is that the vm_ registers 

are always at the top of the native stack, while 

the identifier of the register to be used is stored 

in the last byte of arg0 of the virtual instruction. 

The following code can be used to access the 

respective virtual register:
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jump. This “jump offset” is actually an offset in 

the bytecode. When parsing jumps, we need to 

put a marker to the location to which it jumps. 

For example, this code can be used:

Finally, there is a vm_ handler responsible for 

executing native instructions from arguments, 

which needs special treatment. For this, we 

have to use a disassembler for native x86 

instructions – for example, the open source tool 

Distorm.

The length of an instruction is stored in 

vm_ context.vi_ params.OpCode & 0x0000FF00. 

The opcode of the native instruction that 

will be executed is stored in the arguments. 

The following code can be used to parse the 

vm_ handler that executes native code:

5.  Writing your own 
disassembler
After we have correctly analyzed all the 

vm_ instructions , there is still one step to 

be done before we can start the analysis 

of the sample – we need to write our own 

disassembler for the bytecode (parsing it 

manually would be problematic due to its size).

By putting in the effort and writing a more 

robust disassembler we can save ourselves 

some trouble when FinFisher’s virtual machine 

is changed and updated.

Let’s start with the vm_ handler 0x0C, which 

executes the following instruction:

mov [tmp_ REG], reg

This instruction takes exactly one argument 

– the identifier of a native register to be used 

as reg. This identifier must be mapped into 

a native register name, for instance using a 

resolve_ reg function as described above.

The following code can be used to dissasemble 

this vm_ handler:

Again, vm_ handlers for jumps are harder 

to understand. In case of jumps, members 

vm_ context.vi_ params.Arg0 and vm_ context.
vi_ params.Arg1 store the offset by which to 

def vm_0C(state, vi_params):
global instr
reg_pos = 7 – (vi_arams[arg0] 
& 0x000000FF)
tmpinstr = “mov [tmp_REG], 
%s” % resolve_reg(reg_pos)
instr.append(tmpinstr)
return

def computeLoc1(pos, vi_params):
global instr

jmp_offset = (vi_params[arg0] 
& 0x00FFFFFF) + (vi_params[arg1] 
& 0xFF000000)

if jmp_offset < 0x7FFFFFFF:
jmp_offset /= 0x18 # their 
increment by 0x18 is my 
increment by 1

else:
jmp_offset = int((-
0x100000000 + jmp_offset) 
/ 0x18)

return pos+jmp_offset

def resolve_reg(reg_pos):
stack_regs = [‘eax’, ‘ecx’, ‘edx’, ‘ebx’, ‘esp’, ‘ebp’, ‘esi’, ‘edi’]
stack_regs.reverse()
return stack_regs[reg_pos]

reg_pos = 7 – (state[arg0] & 0x000000FF)
reg = resolve_reg(reg_pos)
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For example, from the part of the bytecode 

shown in Figure 12, we may get the following 

output:

mov tmp_REG, 0
add tmp_REG, EBP
add tmp_REG, 0x10
mov tmp_REG, [tmp_REG]
push tmp_REG
mov tmp_REG, EAX
push tmp_REG

Figure 12 // Part of the unpacked and decrypted FinFisher bytecode

Up to this point, we have created Python 

functions to disassemble each vm_ handler. All 

of these, combined with the code responsible 

for marking jump locations, finding the ID of 

a virtual instruction after the call and a few 

others, are necessary for writing your own 

disassembler.

Afterwards, we can run the finished 

disassembler on the bytecode.

def vm_04(vi_params, pos):
global instr

nBytes = vi_params[opCode] & 0x0000FF00
dyn_instr = pack(“<LLLL”, vi_params[arg0], vi_params[arg4], 

vi_params[arg8], vi_params[argC])[0:nBytes]
dec_instr = distorm3.Decode(0x0, dyn_instr, distorm3.Decode32Bits)

tmpinstr = “%s” % (dec_instr[0][2])
instr.append(tmpinstr)
return
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6.  Understanding the 
implementation of 
this virtual  machine

After we have analyzed all the virtual handlers 

and constructed a custom disassembler, we can 

have one more look at the virtual instructions to 

get an overall idea of how they were created.

First, we must understand that the virtualization 

protection was implemented at the assembly 

level. The authors translated native instructions 

into their own, somewhat complicated 

instructions, which are to be executed by a 

custom virtual CPU. To achieve this, a temporary 

“register” (tmp_ REG) is used.

We can look at some examples to see how 

this translation works. For example, the virtual 

instruction from the previous example –

mov tmp_ REG, EAX

push tmp_ REG

– was translated from the original native 

instruction push eax. When virtualized, a 

temporary register was used in an intermediate 

step to change the instruction into something 

more complicated.

Let’s consider another example:

The native instructions that were translated into 

these virtualized instructions were the following 

(with reg being one of the native registers):

mov reg, [ebp+0x10]

push reg

This is, however, not the only way to virtualize 

a set of instructions. There are other virtual 

machine protectors with other approaches. For 

instance, one of the commercial vm protectors 

translates each math operation instruction 

mov tmp_REG, 0
add tmp_REG, EBP
add tmp_REG, 0x10
mov tmp_REG, [tmp_REG]
push tmp_REG

into NOR logic, with a number of temporary 

registers being used instead of one.

Conversely, FinFisher’s virtual machine did not 

go as far as to cover all the native instructions. 

While many of them can be virtualized, some 

can’t – math instructions, such as add, imul and 

div, being some examples. If these instructions 

appear in the original binary, the vm_ handler 
responsible for executing native instructions is 

called to handle them in the protected binary. 

The only change is that EFLAGS and native 

registers are popped from the native stack just 

before the native instruction is executed, and 

pushed back after it is executed. This is how the 

virtualization of every native instruction was 

avoided.

A significant drawback of protecting binaries 

with a virtual machine is the performance 

impact. In the caseof FinFisher’s virtual 

machine, we estimate it to be more than one 

hundred times slower than native code, based 

on the number of instructions that have to be 

executed to handle every single vm_ instruction 

(vm_ dispatcher + vm_ handler).

Therefore, it makes sense to protect only 

selected parts of the binary– and this is also the 

case in the FinFisher samples we analyzed.

Moreover, as mentioned before, some of 

the virtual machine handlers can call native 

functions directly. As a result, the users of the 

virtual machine protection (i.e. the authors 

of FinFisher) can look at the functions at the 

assembly level and mark which of them are 

to be protected by the virtual machine. For 

those that are marked, their instructions will be 

virtualized, for those that are not, the original 

functions will be called by the respective virtual 

handler. Thus, the execution might be less time-

consuming while the most interesting parts of 

the binary stay protected. (Figure 13)
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7.   Automating the 
disassembly process 
for more FinFisher 
samples

In addition to the length of the bytecode our 

parser has to process, we have to keep in mind 

that there is some randomization across various 

FinFisher samples. Although the same virtual 

machine has been used for the protection, the 

mapping between the virtual opcodes and the 

vm_ handlers is not always constant. They can 

be (and are) paired randomly and differently 

for each of the FinFisher samples we analyzed. 

It means that if the vm_ handler for the 0x5 

virtual opcode in this sample handles the  mov 

[tmp_ REG], arg0 instruction, it may be 

assigned a different virtual opcode in another 

protected sample.

To address this issue, we can use a signature 

for each of the analyzed vm_ handlers . The 

IDA Python script in Appendix A can be applied 

after we have generated a graph as shown in 

Figure 7 (it is particularly important to have 

the jz/jnz jump obfuscation eliminated – as 

described in the first section of this guide) to 

name the handlers based on their signatures. 

(With a small modification, the script can also 

Figure 13 // Scheme representing FinFisher’s entire vm protection and how the execution can jump out of the vm

be used to recreate the signatures in case the 

vm_ handlers are changed in a future FinFisher 

update.)

As mentioned above, the first vm_ handler 
in the FinFisher sample you analyze may be 

different than JL, as in the example FinFisher 

sample, but the script will identify all of the 

vm_ handlers correctly.

8.  Compil ing 
disassembled code 
without the VM

After disassembly and after a few 

modifications, it is possible to compile the 

code. We will treat virtual instructions as native 

instructions. As a result, we will get a pure 

binary without the protection.

Most of the vm_ instructions can be compiled 

immediately using copy-paste, since the output 

of our disassembler mostly consists of native-

looking instructions. But some cases need 

special treatment:

• tmp_ REG – since we defined tmp_ REG as 

a global variable, we need to make code 

adjustments for cases when an address 

stored in it is being dereferenced. (Since 
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dereferencing an address which is in a global 

variable is not possible in the x86 instruction 

set.) For example, the vm contains the virtual 

instruction mov tmp_ REG, [tmp_ REG] which 

needs to be rewritten as follows:

• Flags – Virtual instructions do not change 

the flags, but native math instructions do. 

Therefore, we need to make sure that virtual 

math instruction won’t change flags in the 

devirtualized binary either, which means 

we have to save flags before executing 

this instruction and restore them after the 

execution.

• Jumps and calls – we have to put a marker to 

the destination virtual instruction (jumps) or 

function (calls).

push eax
mov eax, tmp_REG
mov eax, [eax]
mov tmp_REG, eax
pop eax

• API function calls – in most cases, API 

functions are loaded dynamically, whereas 

in others they are referenced from the IAT of 

the binary, so these cases need to be handled 

accordingly.

• Global variables, native code – Some global 

variables need to be kept in the devirtualized 

binary. Also in the FinFisher dropper, there is a 

function for switching to x64 from x86 that is 

executed natively (actually it is done only with 

the retf instruction). All these must be kept 

in the code when compiling.

Depending on the output of your disassembler, 

you may still need to do a few more 

modifications to get pure native instructions 

that can be compiled. Then, you can compile the 

code with your favorite assembly-compiler into 

a binary without the VM.
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CONCLUSION

In this guide, we have described how FinFisher 

uses two elaborate techniques to protect 

its main payload. The primary intention of 

this protection is not to avoid AV detection, 

but to cover the configuration files and new 

techniques implemented in the spyware by 

hindering analysis by reverse engineers. As 

no other detailed analysis of the obfuscated 

FinFisher spyware has been published to date, 

it seems the developers of these protection 

mechanisms have been successful.

We have shown how we can overcome the 

anti-disassembly layer automatically, and how 

the virtual machine can be efficiently analyzed.

We hope this guide can help reverse engineers 

analyze vm-protected FinFisher samples, as 

well to better understand other virtual machine 

protectors in general.
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Appendix A
IDA Python script for naming  
FinFisher vm_ handlers

The script is also available on ESET’s GitHub repository:  

https://github.com/eset/malware-research/blob/master/finfisher/ida_finfisher_vm.py 

i m p o r t   s y s 

SIGS={‘8d4b408b432c8b0a90800f95c2a980000f95c03ac275ff631c’:‘case_0_JL
_loc1’,‘8d4b408b432c8b0a9400074ff631c’:‘case_1_JNP_loc1’,‘8d4b408b432c
8b0a94000075a90800f95c2a980000f95c03ac275ff631c’:‘case_2_JLE_loc1’,‘8d4
b 4 0 8 b 7 b 5 0 8 b 4 3 2 c 8 3 e 0 2 f 8 d b c 3 8 3 1 1 8 1 2 b 5 c 7 8 7 c f e 7 e d 4 a e 9 2 f 8 b 0 6 6 c 7 8 7 d 3 e 7 e  
4 a f 9 b 8 e 8 0 0 0 0 5 8 8 d 8 0 ’   :   ‘ c a s e _ 3 _ v m _ j c c ’ ,   ‘ 8 b 7 b 5 0 8 b 4 3 2 c 8 3 e 0 2 f 3 f 8 5 7 6 6 c 7 7 a c 6 6 6 8 
1 3 7 3 1 6 7 8 3 c 7 2 8 d 7 3 4 0 f b 6 4 b 3 d f 3 a 4 c 6 7 e 9 8 0 3 7 8 1 8 b 4 3 c 8 9 4 7 1 c 6 4 7 5 6 c 8 0 7 7 5 a f 8 3 3 1 8 5 8 8 b 6 
3 2 c ’   :   ‘ c a s e _ 4 _ e x e c _ n a t i v e _ c o d e ’ ,   ‘ 8 d 4 b 4 0 8 b 9 8 b 4 3 8 8 9 8 8 3 3 1 8 8 b 4 3 c 8 b 6 3 2 c ’   :   ‘ c 
a s e _ 5 _ m o v _ t m p _ R E G r e f _ a r g 0 ’ ,   ‘ 8 b 7 b 5 0 8 b 4 3 2 c 8 3 e 0 2 f 3 f 8 5 7 6 6 c 7 7 a c 6 6 6 8 1 3 7 3 1 6 7 8 3 c 7 
2 8 d 7 3 4 0 f b 6 4 b 3 d f 3 a 4 c 6 7 e 9 8 0 3 7 8 1 8 b 4 3 c 8 9 4 7 1 c 6 4 7 5 6 c 8 0 7 7 5 a f 8 3 3 1 8 5 8 8 b 6 3 2 c ’   :   ‘ c a s 
e_6_exec_native_code’,‘8d4b408b432c8b0a94000075ff631c’:‘case_7_JZ_loc1’
,   ‘ 8 d 4 b 4 0 8 b 4 3 2 c 8 b 0 a 9 4 0 0 0 0 7 5 a 9 0 8 0 0 f 9 5 c 2 a 9 8 0 0 0 0 f 9 5 c 0 3 a c 2 7 5 f f 6 3 1 8 ’   :   ‘ c a s e _ 8 _ 
JG_loc1’,‘8d43408b089438833188b43c8b632c’:‘case_9_mov_tmp_REG_arg0’,‘3
3 c 9 8 9 4 b 8 8 3 3 1 8 8 b 6 3 2 c 8 b 4 3 c ’   :   ‘ c a s e _ A _ z e r o _ t m p _ R E G ’ ,   ‘ 8 d 4 b 4 0 8 b 4 3 2 c 8 b 0 a 9 8 0 0 0 0 
75ff631c’:‘case_B_JS_loc1’,‘8d4b40fb69b870002bc18b4b2c8b548148b4b889118
3 3 1 8 8 b 4 3 c 8 b 6 3 2 c ’   :   ‘ c a s e _ C _ m o v _ t m p _ R E G D e r e f _ t m p _ R E G ’ ,   ‘ 8 d 4 b 4 0 f b 6 9 b 8 7 0 0 0 2 b c 
1 8 b 4 b 2 c 8 b 4 4 8 1 4 8 9 4 3 8 8 3 3 1 8 8 b 4 3 c 8 b 6 3 2 c ’   :   ‘ c a s e _ D _ m o v _ t m p _ R E G _ t m p _ R E G ’ ,   ‘ 8 d 4 b 
408b432c8b0a9100075ff631c’:‘case_E_JB_loc1’,‘8d4b408b432c8b0a9100075a94
000075ff631c’:‘case_F_JBE_loc1’,‘8d4b408b432c8b0a94000074ff631c’:‘cas
e_10_JNZ_loc1’,‘8d4b408b432c8b0a9080074ff631c’:‘case_11_JNO_loc1’,‘8b7
b 5 0 8 3 4 3 5 0 3 0 8 d 4 b 4 0 8 b 4 1 4 3 4 3 2 8 5 7 6 6 c 7 7 3 f 5 0 6 6 8 1 3 7 a 2 3 1 c 6 4 7 2 c 2 8 0 7 7 2 a a 8 d 5 7 d 8 3 c 7 3 8 9 
1 7 8 3 e f 3 c 7 4 7 7 a 3 0 0 0 8 0 7 7 7 c b 8 3 c 7 8 8 9 7 8 3 e f 8 c 6 4 7 c f 2 8 0 7 7 c 3 1 8 3 c 7 d c 6 7 6 8 8 b 3 8 3 c 0 1 8 8 9 4 7 
1 8 3 c 7 5 6 6 c 7 7 7 7 f e 6 6 8 1 3 7 1 7 6 2 8 3 c 7 2 c 6 7 2 d 8 0 3 7 4 5 8 9 5 f 1 8 3 c 7 5 c 6 7 8 4 8 0 3 7 d f 4 7 8 b 4 3 1 4 c 6 7 4 
0 8 0 3 7 2 8 8 9 4 7 1 8 3 c 7 5 c 6 7 9 2 8 0 3 7 5 1 5 f 8 b 6 3 2 c ’   :   ‘ c a s e _ 1 2 _ v m _ c a l l ’ ,   ‘ 8 d 4 b 4 0 b 8 7 0 0 0 2 b 
1 8 b 5 3 2 c 8 b 4 4 8 2 4 8 9 4 3 8 8 3 3 1 8 8 b 4 3 c 8 b 6 3 2 c ’   :   ‘ c a s e _ 1 3 _ m o v _ t m p _ R E G _ t m p _ R E G _ n o t R l y 
’,‘8d4b408b432c8b0a9400075ff631c’:‘case_14_JP_loc1’,‘8d4b40fb69b870002
b c 1 8 b 4 b 2 c 8 b 5 3 8 8 9 5 4 8 1 4 8 3 3 1 8 8 b 4 3 c 8 b 6 3 2 c ’   :   ‘ c a s e _ 1 5 _ m o v _ t m p _ R E G _ t m p _ R E G ’ ,   ‘ 8 
d4b408b432c8b0a9080075ff631c’:‘case_16_JO_loc1’,‘8d4b408b432c8b0a90800f
95c2a980000f95c03ac274ff631c’:‘case_17_JGE_loc1’,‘8b4388b089438833188b4
3 c 8 b 6 3 2 c ’   :   ‘ c a s e _ 1 8 _ d e r e f _ t m p _ R E G ’ ,   ‘ 8 d 4 b 4 0 8 b 4 3 8 8 b 9 d 3 e 0 8 9 4 3 8 8 3 3 1 8 8 b 4 3 c 8 b 6 
3 2 c ’   :   ‘ c a s e _ 1 9 _ s h l _ t m p _ R E G _ a r g 0 l ’ ,   ‘ 8 d 4 b 4 0 8 b 4 3 2 c 8 b 0 a 9 8 0 0 0 0 7 4 f f 6 3 1 c ’   :   ‘ c a 
se_1A_JNS_loc1’,‘8d4b408b432c8b0a9100074ff631c’:‘case_1B_JNB_loc1’,‘8b
7 b 2 c 8 b 7 3 2 c 8 3 e f 4 b 9 2 4 0 0 0 f c f 3 a 4 8 3 6 b 2 c 4 8 b 4 b 2 c 8 b 4 3 8 8 9 4 1 2 4 8 3 3 1 8 8 b 4 3 c 8 b 6 3 2 c ’   :   ‘ c 
a s e _ 1 C _ p u s h _ t m p _ R E G ’ ,   ‘ 8 d 4 b 4 0 8 b 4 3 2 c 8 b 0 a 9 4 0 0 0 0 7 5 a 9 1 0 0 0 7 5 f f 6 3 1 8 ’   :   ‘ c a s e _ 1 D _ 
JA_loc1’,‘8d4b40b870002b18b532c8b448241438833188b43c8b632c’:‘case_1E_ad
d _ s t a c k _ v a l _ t o _ t m p _ R E G ’ ,   ‘ 8 b 7 b 5 0 8 3 4 3 5 0 3 0 6 6 c 7 7 a c 3 7 6 6 8 1 3 7 3 1 5 6 5 7 8 3 c 7 2 8 d 4 b 4 0 c 6 
7 2 e 8 0 3 7 4 6 f b 6 4 3 3 d 3 c 7 8 3 c 0 5 8 9 4 7 1 8 3 c 7 5 8 d 7 1 4 f b 6 4 b 3 d f 3 a 4 5 a c 6 7 1 2 8 0 3 7 7 a 8 b 3 8 3 c 0 1 8 8 9 
4 7 1 8 3 c 7 5 6 6 c 7 7 7 f 3 0 6 6 8 1 3 7 1 f a c 8 3 c 7 2 c 6 7 1 f 8 0 3 7 7 7 8 9 5 f 1 8 3 c 7 5 c 6 7 7 0 8 0 3 7 2 b 4 7 c 6 7 9 8 0 3 7 
6 1 8 b 4 b 1 4 8 9 4 f 1 8 3 c 7 5 c 6 7 7 7 8 0 3 7 b 4 8 b 6 3 2 c 8 d 1 2 ’   :   ‘ c a s e _ 1 F _ v m _ j m p ’ ,   ‘ 8 d 4 b 4 0 8 b 9 1 4 b 
8 8 3 3 1 8 8 b 4 3 c 8 b 6 3 2 c ’   :   ‘ c a s e _ 2 0 _ a d d _ a r g 0 _ t o _ t m p _ R E G ’ ,   ‘ 8 d 4 b 4 0 8 b 9 8 b 4 3 8 8 9 1 8 3 3 1 
8 8 b 6 3 2 c 8 b 4 3 c ’   :   ‘ c a s e _ 2 1 _ m o v _ t m p _ R E G _ t o _ a r g 0 D e r e f e r e n c e d ’   } 

S W I T C H   =   0   #   a d d r   o f   j m p           d w o r d   p t r   [ e a x + e c x * 4 ]   ( j u m p   t o   v m _ h a n d l e r s ) 
SWITCH_SIZE=34

s i g   =   [ ] 

d e f   a p p e n d _ b y t e s ( i n s t r ,   a d d r ) : 
        f o r   j   i n   r a n g e ( i n s t r . s i z e ) : 
                s i g . a p p e n d ( B y t e ( a d d r ) ) 

https://github.com/eset/malware-research/blob/master/finfisher/ida_finfisher_vm.py
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                a d d r   + =   1 
        r e t u r n   a d d r 

defmakeSigName(sig_name,vm_handler):
        p r i n t   “ n a m i n g   % x   a s   % s ”   %   ( v m _ h a n d l e r ,   s i g _ n a m e ) 
MakeName(vm_handler,sig_name)
        r e t u r n 

i f   S W I T C H   = =   0 : 
        p r i n t   “ F i r s t   s p e c i f y   a d d r e s s   o f   s w i t c h   j u m p   -   j u m p   t o   v m _ h a n d l e r s ! ” 
        s y s . e x i t ( 1 ) 
        
foriinrange(SWITCH_SIZE):
        a d d r   =   D w o r d ( S W I T C H + i * 4 ) 
        f a d d r   =   a d d r 
        
        s i g   =   [ ] 
        
        w h i l e   1 : 
                
                i n s t r   =   D e c o d e I n s t r u c t i o n ( a d d r ) 
                i f   i n s t r . g e t _ c a n o n _ m n e m ( )   = =   “ j m p ”   a n d   ( B y t e ( a d d r )   = =   0 x e b   o r   B y t e 
( a d d r )   = =   0 x e 9 ) : 
                        a d d r   =   i n s t r . O p 1 . a d d r 
                        c o n t i n u e 
                i f   i n s t r . g e t _ c a n o n _ m n e m ( )   = =   “ j m p ”   a n d   B y t e ( a d d r )   = =   0 x f f   a n d   B y t e 
( a d d r + 1 )   = =   0 x 6 3   a n d   ( B y t e ( a d d r + 2 )   = =   0 x 1 8   o r   B y t e ( a d d r + 2 )   = =   0 x 1 C ) : 
                        a d d r   =   a p p e n d _ b y t e s ( i n s t r ,   a d d r ) 
                        b r e a k 
                i f   i n s t r . g e t _ c a n o n _ m n e m ( )   = =   “ j m p ”   a n d   B y t e ( a d d r )   = =   0 x f f : 
                        b r e a k 
                i f   i n s t r . g e t _ c a n o n _ m n e m ( )   = =   “ j z ” : 
                        s i g . a p p e n d ( B y t e ( a d d r ) ) 
                        a d d r   + =   i n s t r . s i z e 
                        c o n t i n u e 
                i f   i n s t r . g e t _ c a n o n _ m n e m ( )   = =   “ j n z ” : 
                        s i g . a p p e n d ( B y t e ( a d d r ) ) 
                        a d d r   + =   i n s t r . s i z e 
                        c o n t i n u e 
                i f   i n s t r . g e t _ c a n o n _ m n e m ( )   = =   “ n o p ” : 
                        a d d r   + =   1 
                        c o n t i n u e 
                a d d r   =   a p p e n d _ b y t e s ( i n s t r ,   a d d r ) 
        
        s i g _ s t r   =   “ ” . j o i n ( [ h e x ( l ) [ 2 : ]   f o r   l   i n   s i g ] ) 
        h s i g   =   ‘ ’ . j o i n ( m a p ( c h r ,   s i g ) ) . e n c o d e ( “ h e x ” ) 
        
        f o r   k e y ,   v a l u e   i n   S I G S . i t e r i t e m s ( ) : 

                i f   l e n ( k e y )   >   l e n ( s i g _ s t r ) : 
ifkey.find(sig_str)>=0:
makeSigName(value,faddr)
                e l s e : 
ifsig_str.find(key)>=0:
makeSigName(value,faddr)


