
:: Heuristic Analysis—
Detecting Unknown Viruses

Anti-virus does much more than
reactively detect known viruses; it

proactively scans for unknown ones too.
So, how do scanners really work?

David Harley BA CISSP FBCS CITP

Andrew Lee CISSP

1

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Table of Contents

Introduction 2

Watching the Detectives 3

 Viruses 3

 Worms 4

 Non-replicative Malware 4

What does Heuristic really mean? 6

 Signature Scanning 7

 The Opposite of Heuristics 9

 Generic Anti-virus 9

 I’m Absolutely Positive 11

 Sensitivity and Misdiagnosis 12

 Testing Issues 14

Conclusion: A Heuristic Paradox 17

References 19

Glossary 20

2

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Introduction

“It ain’t what you don’t know that kills you, it’s what you know that just ain’t so.”

Some of the most persistent myths in computing relate to virus and anti-virus (AV)

technology. The widely-held belief that AV software can only detect specifi c, known viruses

has been around since the early days of AV research. It wasn’t altogether true then; some

of the fi rst AV programs weren’t intended to detect specifi c viruses, but rather to detect or

block virus-like behavior, or suspicious changes in fi les. And, it’s defi nitely not true now.

Commercial AV systems supplement signature scanning with a variety of more generic

approaches, which are often grouped together under the banner of heuristic analysis.

Furthermore, most modern AV products are capable of detecting a wide range of malicious

software (malware is a contraction of the words “malicious” and “software”), not just viruses.

These may be combined with other security technologies such as the detection of spam and

phishing messages.

The aim of this paper is to reduce some of the confusion around the workings of AV technology,

and to clarify what is realistic to expect from AV protection, particularly heuristic analysis.

The specifi cs of heuristic scanning are discussed in some detail. For the moment we’ll simply

describe heuristic analysis as a method of estimating the probability that a program that

hasn’t been identifi ed as known malware is, nevertheless, viral or malicious.

3

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Watching the Detectives
What does an AV program detect? Quite a lot

as it happens, including some items that aren’t

technically viruses. Most of what we see referred to

as viruses might be better described as malware. The

irony is that many specialist detection products (i.e.

for detecting spyware or Trojans) are marketed as

being necessary because AV only detects viruses.

In fact, commercial AV catches a far wider range of malware than most of these specialist

services. A specialist program may detect more threats within its own specialty, but this

depends not only on the program’s ability to catch specifi c threats and threat types, but also

on other factors such as:

• The program’s generic detection capabilities

• The criteria used to diff erentiate between malware variants

• The sample sharing mechanisms between vendors (AV vendors have particularly
eff ective and well-established ways of doing this, compared to vendors in other
areas of malware detection.)

The following sections consider three major types of malware. A complete taxonomy of all

malware would be out of scope for this paper.

Viruses

It’s certainly reasonable to expect AV software to detect viruses, and it is partly because AV

has been so successful at detection over the years, that its capacity for detecting other types

of malware has been underestimated.

While there are many defi nitions of virus, a defi nition

accepted by most malware researchers is “a

computer program that can infect other computer

programs by modifying them in such a way as to

include a (possibly evolved) copy of itself.” 1, 2

This defi nition covers many types of virus, including:

• Boot sector and/or partition sector infectors

• File infectors (parasitic viruses)

• Multipartite viruses

• Macro and script viruses

While some of these virus types are rarely seen today (for example boot sector and partition

sector infectors), AV programs generally detect all known viruses for the platform on which

they are found (and sometimes for other platforms). In general, they’re also pretty good at

detecting new and unknown “true” viruses heuristically.

It is partly because
AV has been pretty
successful over the
years, that its capacity
for detecting other
types of malware has
been underestimated.

Most of what we see
referred to as viruses
might better be
described as malware

4

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Worms

The AV industry has never quite reached consensus on whether worms are, as Cohen stated,

a “special case of virus”,1 but whatever the case, AV software normally detects them anyway.

There are at least as many defi nitions of worm as there are of virus, but most AV researchers

defi ne a worm as a program that replicates non-parasitically, i.e. without attaching itself to

a host fi le. Mass mailers could be described as a special type of worm. Most AV companies

describe this type of email-borne malware as a worm, but some mailers and mass mailers

have the characteristics of a “pure” virus (Melissa, for example, was actually a pure virus, a

macro virus that spread like a worm, while W32/Magistr was a fi le infector).

Here too, vendors have a pretty good handle on the detection of new variants. New mass

mailers, for example are usually fl agged by messaging security providers and systems almost

as soon as they appear.

Non-replicative Malware

It follows from the above defi nitions that if a malicious program doesn’t replicate, it can’t be

a virus or worm. But that doesn’t mean AV software can’t detect it, or that it isn’t damaging.

Keep in mind that even when vendors used to protest at the detection of non-replicative

objects because they weren’t viruses, some non-replicative objects (some of them not even

executable programs, let alone malicious) were still detected and fl agged.3 For example:

• Intendeds (viruses that fail to replicate) and
corruptions

• Garbage fi les

• Virus-related but non-viral programs such as germs,
droppers, and virus generators

• Legitimate test programs such as an EICAR test fi le4

Many non-replicative objects have circulated for years in

poorly maintained virus collections that have been used by

some reviewers to test AV software. Most vendors gave up

protesting long ago and added defi nitions (signatures) for

these objects to their databases, in the hope of avoiding

being penalized for not detecting them. Unfortunately, the increasing sophistication of

heuristic scanners has barely kept pace with the ability of AV testers to fi nd new and not

always appropriate ways of testing. Later in this paper we will briefl y consider technically

acceptable ways of testing a product’s heuristic capabilities.

The best-known non-replicative malware is the Trojan Horse (or Trojan for short). A Trojan is “a

program that claims to perform some desirable or necessary function, and might even do so,

Many non-
replicative
objects have
circulated for
years in poorly
maintained
virus collections.

5

White Paper: Heuristic Analysis—Detecting Unknown Viruses

but also performs some function or functions that the individual who runs the program

would not expect and would not want.”5 This covers a range of specialized malware,

including:

• Droppers

• Keyloggers

• Destructive Trojans

• Downloaders

• Spyware

• Adware

• Rootkits and stealthkits

• Joke programs (some)

• Zombies (bots, Remote Access Trojans, DDoS agents, and so forth)

Replicative malware such as viruses can also sometimes be described as Trojans (or as

Trojanized or Trojaned, implying that a formerly legitimate program has been subverted,

altered or replaced to make it in some way damaging), though most people are likely to fi nd

that use more confusing than helpful. Detection of all versions of non-replicative malware

is even less attainable than the detection of all forms of viruses, since a far wider range of

functions has to be tested for than the mere ability to replicate.

Much of the debate on what is or is not a Trojan (or malicious) rests not on function, but

rather on intent. For example, a keylogger is not a Trojan if it has been legitimately or

consensually installed, and yet the function is identical. This leads to detection problems,

because computers are less able than humans to determine intent.

Spyware and adware – perhaps due to the heightened media interest, and the products

available exclusively for their detection – have recently been separated into their own

subclasses of malware. The distinction here, though, is mostly unnecessary, although it

could be (and often is) argued that adware in particular is not always malware. However,

the same argument can be made for almost all of the items in this list, in that it’s not what

the program does that makes it malicious; it’s the gap between the bad intentions of the

programmer and the expectation of the program user.

6

White Paper: Heuristic Analysis—Detecting Unknown Viruses

What Does Heuristic Really Mean?
“Heuristic” refers to the act or process of fi nding or discovering. The Oxford English Dictionary

defi nes heuristic as “enabling a person to discover or learn something for themselves” or (in

the computing context) “proceeding to a solution by trial and error or by rules that are only

loosely defi ned”.6 The Merriam-Webster Dictionary defi nes it as “an aid to learning, discovery,

or problem-solving by experimental and especially trial-and-error methods” or (again, in the

context of computing) “relating to exploratory problem-solving techniques that utilize self-

educating techniques (as the evaluation of feedback) to improve performance.”7

Heuristic programming is usually regarded as an application of artifi cial intelligence, and

as a tool for problem solving. Heuristic programming, as used in expert systems, builds on

rules drawn from experience, and the answers generated by such a system get better as the

system “learns” by further experience, and augments its knowledge base.

As it is used in the management of malware (and indeed spam and related nuisances),

heuristic analysis, though closely related to these elements of trial-and-error and learning

by experience, also has a more restricted meaning. Heuristic analysis uses a rule-based

approach to diagnosing a potentially-off ending fi le (or message, in the case of spam

analysis). As the analyzer engine works through its rule-base, checking the message against

criteria that indicate possible malware, it assigns score points when it locates a match. If

the score meets or exceeds a threshold score,8 the fi le is fl agged as suspicious (or potentially

malicious or spammy) and processed accordingly.

In a sense, heuristic anti-malware attempts to apply the processes of human analysis to an

object. In the same way that a human malware analyst would try to determine the process

of a given program and its actions, heuristic analysis performs the same intelligent decision-

making process, eff ectively acting as a virtual malware researcher. As the human malware

analyst learns more from and about emerging threats he or she can apply that knowledge to

the heuristic analyzer through programming, and improve future detection rates.

Heuristic programming has a dual role in AV

performance: speed and detection. In fact, the term

heuristic is applied in other areas of science9 in a

very similar sense; aiming to improve performance

(especially speed of throughput) through a “good

enough” result rather than the most exact result. As

the total number of known viruses has increased, so

has the need to improve detection speed. Otherwise

the increased time needed to scan for an ever-

increasing number of malicious programs would

make the system eff ectively unusable.

Heuristic analysis uses

a rule-based approach

to diagnosing a

potentially-off ending

fi le (or message, in

the case of spam

analysis).

7

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Despite the much-improved performance of some contemporary heuristic engines, there

is a danger that the impact of heuristic (and even non-heuristic) scanning may be seen as

outweighing the advantages of improved detection. There is a common belief that heuristic

scanners are generally slower than static scanners, but at a

certain point of sophistication this ceases to be true.

Even early heuristic scanners using simple pattern

detection benefi ted from optimization techniques that

searched only the parts of an object where a given virus

could be expected to be found. (A simple example - there’s

no point in scanning an entire fi le for a virus signature, if

that virus always stores its core code at the beginning or

end of an infected fi le.) This reduces scanning overhead and

lessens the risk of a false positive.

The inappropriate detection of a viral signature in a

place where the virus would never be found in normal

circumstances is not only a side eff ect of poor detection methodology, but a symptom of

poorly designed detection testing. For instance, some testers have attempted to test the

capabilities of an AV program by inserting virus code randomly into a fi le or other infectible

object. Similarly, a particular kind of object such as a fi le or boot sector can be selectively

scanned for only those types of malware that can realistically be expected to be found in

that object, a process sometimes described as “fi ltering”. After all, there’s no reason to look

for macro virus code in a boot sector.

However, correct identifi cation of a fi le type is not concrete proof of an uncontaminated fi le.

For example, Microsoft Word document fi les containing embedded malicious executables

have long been a major attack vector for information theft and industrial espionage.

Similarly, malware authors are constantly in search of attacks where an object not normally

capable of executing code can be made to do so for example, by modifying the runtime

environment. W32/Perrun, for example, appended itself to .JPG and .TXT fi les, but could not

actually run unless specifi c changes were made in the operating environment to allow the

Perrun code to be extracted and run.

Signature Scanning

Signature scanning refers to fairly straightforward

pattern matching algorithms, searching for a sequence

of bytes (a string), characteristic of each virus or variant

in the scanner’s defi nitions database, but one that isn’t

likely to occur by accident in an uninfected fi le. Some

AV researchers have tried to discourage2 the use of the

signature scanning description in favor of “search string” or “scan string”, but that seems

pointless when even AV companies routinely use the expression.

As the total

number of

known viruses

has increased,

so has the need

to improve

detection speed.

In fact, many viruses
cannot be identifi ed
by searching for a
static string.

8

White Paper: Heuristic Analysis—Detecting Unknown Viruses

An objection to the term is that it perpetuates an antiquated notion of the workings of

scanners, though the same argument could also be applied to the alternative terms.

The real diffi culties with the use of the term “signature scanning” are that it:

• Perpetuates the myth that it is the only kind
of detection performed by AV scanners. In
fact, many viruses cannot be identifi ed by
searching just for a static string.

• Suggests that there is a single sequence
of bytes in every virus that is used by all
scanners to identify it. In fact, diff erent
scanners may use very diff erent search strings
(and algorithms) to detect the same virus.

Some sources10 have confused the issue further by

giving the impression that scanners look for simple

text strings rather than byte sequences. Such a

method is generally unreliable, totally ineff ective

with many types of malware, and programmatically

ineffi cient. It is also easily exploitable by a virus writer – or, in fact, anyone capable of editing

a fi le – and dangerous in its potential for generating numerous false positives.

Wildcards and UNIX-like regular expressions allow more fl exibility in string searching.

Instead of looking for a static string (a fi xed sequence of bytes), the scanner recognizes

a virus-associated string even when other bytes or byte sequences (noise bytes) are

interpolated between string elements. A simple example of a noise byte is the insertion of a

NOP (No Operation) instruction, which performs no function except to take up processing

time without performing an actual operation.

These enhancements to basic string-scanning enable detection of some encrypted and

polymorphic viruses.8 However, even with this kind of enhancement, string scanning isn’t

particularly effi cient when it comes to scanning for multiple viruses, and the advent of

complex polymorphic viruses actually killed off some scanners that were unable to move to

more advanced detection techniques.8, 11

Algorithmic virus-specifi c scanning in current AV technology is often based on interpreted

code run inside a virtual machine. Virtualization and emulation may, for example, be used

to remove incidental or intended obfuscation such as packing, compression or encryption.

Once the fi le is de-obfuscated, it can then be analyzed algorithmically – or heuristically – by

an AV scanning process.

Virtual machines also play a major part in the implementation of heuristic analysis, and can

be very successful, despite the many problems associated with emulating an environment

as complex as a modern Windows™ environment.12 (However, it needs to be understood

that emulation cannot be perfect, and the latency penalty (the increased processing time)

can be considerable, and varies according to the particular fi le being tested.)

The advent of complex

polymorphic viruses

actually killed off

some scanners that

were unable to move

to more advanced

detection techniques.

9

White Paper: Heuristic Analysis—Detecting Unknown Viruses

The Opposite of Heuristics

The myth that commercial AV can only detect known instances, variants and sub-variants

of known malware is, perhaps, less widespread than it was. However, it has been partly

supplanted by the lesser myth that virus-specifi c scanners and heuristic scanners are two

completely diff erent types of scanners. In fact, heuristic analysis as we know it has been

in use for over a decade, but heuristic techniques to optimize virus control have been

used for much longer in “known virus” scanners. They have also had a place in related

countermeasures such as behavior blockers and monitors, and integrity checkers.

In a sense, the opposite of heuristic analysis in AV is not signature scanning but algorithmic

scanning, of which signature scanning is a special case.

Algorithmic scanning, like other forms of algorithmic coding, is based on mathematically

provable procedures.13 What is referred to in the industry as algorithmic scanning is normally

understood to be based on an algorithm (other than simply searching for a static string – a

fi xed sequence of bytes) which is specifi c to the virus it is intended to detect.

In real life of course, heuristic analysis as described

above is also considered algorithmic in the more general

sense. However, the use of the term algorithmic in the

specialized, virus-specifi c (and therefore somewhat

misleading) sense has become too widely used within

the industry12 to ignore. Heuristics are normally

characterized as using a specifi c scoring algorithm

that determines the likelihood of the scanned object

being malicious, rather than by the unequivocal

identifi cation of a specifi c malicious program.

Generic Anti-Virus

Heuristic analysis is often considered a generic AV detection mechanism, not a virus-specifi c

detection mechanism. What is not always considered is that the converse is also true;

generic solutions use heuristic rule-sets as part of the diagnostic process.

For instance:

• Mail gateway fi lters use rules to specify what fi le types and fi le names are permitted
as attachments. Such fi lters are very good at countering obvious threats such as
fi les with extensions like .LNK or .JPG, and .EXE, but can be rather infl exible in their
rejection of whole classes of executable fi les. 1 Some fi lters use more advanced
techniques, such as checking that the headers of the fi le scanned match the fi lename
extension. This can signifi cantly reduce the risk of false positives (and false negatives).

1 Why are these obvious threats? In the fi rst case, because the .LNK suffi x denotes a program shortcut, which doesn’t
usually make sense as an email attachment because there is no direct link between the shortcut and the program to
which it should be linked: however, a shortcut fi le in an email attachment is often simply a Windows executable fi le,
renamed to evade fi lters intended to block executable attachments. In the second case, the double extension suggests
an attempt to pass off an executable fi le as a non-executable (graphics) fi le, a common virus writer’s trick.

In a sense, the

opposite of heuristic

analysis in AV is not

signature scanning,

but algorithmic

scanning, of which

signature scanning is

a special case.

10

White Paper: Heuristic Analysis—Detecting Unknown Viruses

• Change detectors use the rule that if an
object’s characteristics have changed,
it should be treated as suspicious. Since
there are many contexts in which a binary
can legitimately change its checksum (as
in self-modifying code, recompiled code,
reconfi guration, run-time compression, a
patched or updated program), such a crude
change detection criterion (i.e., the fi le
has changed, so it must be infected) can exhibit a high false positive rate. However,
change detection can work well in conjunction with virus-specifi c scanning. A well-
proven technique is to compare an object to its checksum and run a full scan on it
only if a previously calculated checksum has changed, reducing the time it takes to
process a fi le that hasn’t changed. This is why an initial scan of a system may take
longer than subsequent scans with some AV programs.

• Behavior monitors and blockers, which evaluate and act upon the way applications
behave, were among the earliest forms of AV software. This approach dovetails
nicely with heuristics, which can enhance behavior blocking performance and
actually reduce false positives. Classic AV behavior monitoring tends to check for two
types of code behavior: replication and potential damage.

 - Replicative code, by defi nition, strongly suggests the presence of a virus
(or worm, depending on the type of code and the defi nition you favor). This
approach has an advantage in that system calls suggesting replicative code are
comparatively easy to programmatically identify, especially where the code isn’t
signifi cantly obfuscated. It is, however, easier to identify a virus that replicates
by writing a straight copy of itself rather than an evolved copy (i.e. a non-
polymorphic virus).

 - Potentially damaging code refl ects the likelihood of a malicious payload.
This approach is ineff ective where there is no payload, or where the payload is
not obviously damaging. Some forms of damage, such as fi le deletion, are easier
to programmatically detect than others, such as the unwanted and potentially
embarrassing display of off ensive messages or images. On the other hand,
successful detection by payload has an advantage when it comes to detecting
non-replicative malware (such as Trojans and other non-viral programs). There
is a need for caution though. For instance, deleting a fi le is by itself an unreliable
indicator of malice, since many programs routinely and legitimately delete or
overwrite fi les such as obsolete confi guration or data fi les.

Generic solutions use

heuristic rule-sets as part

of the diagnostic process.

11

White Paper: Heuristic Analysis—Detecting Unknown Viruses

I’m Absolutely Positive

Virus identifi cation is a balance between two

imperatives: the avoidance of false negatives

(failure to detect an infection where one exists)

and false positives (detection of a virus where

none exists). As demonstrated by a cluster of

false positive problems in several major scanners

in the fi rst few months of 2006, advances in the

optimization of scanner technology have not

eliminated the risk of false positives.

Elimination of false positives is not always

possible using heuristics, which by defi nition

entail a degree of trial and error. As discussed

earlier, the aim of heuristic programming is less to produce the “perfect” result than to

produce a consistently “good enough” result. So what is the problem?

The “safest” way to identify a known virus is to check for the presence of every byte of

virus code that should be present in an infected object, by generating a checksum of every

constant bit in the virus body. This process is often referred to as “exact identifi cation.”

Identifi cation is a measurement of the ability of AV software to detect and recognize a

virus sample as a specifi c virus or variant. Exact identifi cation therefore denotes a level of

precision whereby every constant byte of virus code is taken into account. While it sounds

desirable for this precision to be applied to every virus scan, this is rarely done in the real

world, because of the potential impact on scanning time and system resources, and because

this level of detail is not often necessary.

The term “almost exact identifi cation” is applied if the identifi cation “is only good enough

to ensure that an attempt to remove the virus will not result in damage to the host object

by the use of an inappropriate disinfection method.”2 Detection and removal do not always

pose the same problems. Some AV companies have long advocated that infected program

binaries should be replaced rather than cleaned, preferring to concentrate on detection.

There are also scenarios (rootkits and stealthkits are good examples) where the substitution

of a Trojanized program for a legitimate program means that security software can only

delete, not clean. In such a case it’s usually necessary for the administrator or user to restore

the legitimate program; automatic restoration may not be an option, or even safe.

Malware movement over past several years has been away from the classic parasitic infection

of fi les, to the manipulation of the operating environment (for instance, modifi cation of the

registry). This can make it much harder to remove all traces of malware once it has taken

hold. Incomplete (or incorrect) removal can leave the system damaged or even unusable,

sometimes requiring radical measures, such as the reinstallation of the operating system

and application software, and restoration of data from backups.

Virus identifi cation

is a balance between

two imperatives: the

avoidance of false

negatives (the scanner

fails to detect an infection)

and false positives (the

scanner detects a virus

where none exists).

12

White Paper: Heuristic Analysis—Detecting Unknown Viruses

However, where malware is detected

proactively (i.e. before it has the opportunity

to install on the target system) by heuristic

or generic methods, this problem does not

generally arise, unless the malicious (viral

or Trojanized) object is needed in a non-

infectious form (as, for example, when the

object contains data).

“Generic detection” is a term applied when

the scanner looks for a number of known

variants, using a search string that can detect all of the variants. While it may detect a

currently unknown variant in which the same search string can be found, it’s only a heuristic

detection if it involves the use of a scoring mechanism. Otherwise it’s really a special case

of virus-specifi c detection. Some systems use a hybrid approach, where a scoring system

is added to the generic detection capabilities to give a probability of the variance or family

membership with diff ering degrees of certainty. For instance, if the similarity is close enough,

the scanner may report “a variant of x,” or if less sure, it may report “probably a variant of x”.

Sensitivity and Misdiagnosis

Accuracy in heuristic analysis depends on how aggressively the scoring criteria are set. If the

target malware is new to the scanner, the accuracy of the analyzer output is not dependent

on a simple binary decision (either “yes, it’s a known virus called XXX” or “no, it’s not known

malware”). Rather, the forcefulness of its response lies on a threshold continuum from high

(keeping the number of false positives as low as possible) to low (detecting as many new

viruses as possible). An aggressive response prioritizes detection of possible viruses over the

risk of false positives, where a non-aggressive

response is more appropriate where the adverse

impact of false alarms is considered unacceptable.

It’s not unusual for a product to off er a stark

choice between a default setting (heuristics

off), or a setting with heuristics. (Since we

have already pointed out that all scanners are

to some extent heuristic, perhaps it would be

more accurate to refer to the default setting as

having basic heuristics enabled.) Some vendors

also distinguish between passive and active

heuristics. In both cases, code is scanned for

suspicious characteristics, but in active mode, the scanner uses an emulator environment

to execute and trace the code. In passive mode, it simply statically inspects the code.

“Generic detection” is a term

applied when the scanner

looks for a number of known

variants, using a search

string that can be used to

detect all those variants.

The forcefulness of
its response lies on a
threshold continuum
from high (keeping the
number of false positives
as low as possible) to low
(detecting as many new
viruses as possible).

13

White Paper: Heuristic Analysis—Detecting Unknown Viruses

One way of looking at how scanner technology maps to the threshold continuum might be

along the following lines:

 Threshold Level Corresponding Level of Heuristic

 Highest Exact (or near-exact) identifi cation only; Heuristics are not used, or

kept to a minimum.

 Normal Known virus detection using algorithmic scanning and emulation

as appropriate, as well as exact (or near exact) identifi cation

where needed. Probably with generic signatures to identify fairly

close variants.

 Heuristic mode Medium heuristic level, enhanced detection; fairly low risk from

false positives, use of passive analysis rather than emulator-based

heuristics.

 Lowest Highest (advanced or most sensitive) heuristics, including some

form of emulation. High proportion of new malware detected, but

risk of false positives is increased.

Not all scanners have all these levels of sensitivity, nor do they allow thresholds to be set or

reconfi gured manually, and those that do support levels of sensitivity may not document

them. It should also be emphasized that some form of emulation could be in use anywhere

on the above continuum.

Vendors who disable their advanced heuristics by default may not only be trying to reduce

the risk of false positives, they may be actually trying to improve the product’s perceived

speed. All levels of heuristic analysis add processing overhead to scanning time, and for

some products the slower performance can be all too obvious. However, as we mentioned

earlier, even as the number of known malicious objects increases, with well implemented

coding routines on today’s powerful computers, the impact can be reduced to a manageable

level. In fact, there is a great degree of variability in terms of speed performance degradation

between scanners from diff erent vendors. A properly

implemented heuristic engine should only have a

minimal impact on system performance.

Heuristic sensitivity is not just a technical issue

related to the accuracy of diagnosing the presence of

a previously unknown virus. It’s also a psychosocial

issue; how should we fl ag a possible virus to the end-

user, and what should we advise them to do?

The way a possible virus is fl agged tells the customer

a great deal about the AV vendor. Some products

are cautious, using messages that say, in eff ect,

All levels of heuristic
analysis add
processing overhead
to scanning time,
and for some
products, the slower
performance can be
all too obvious.

14

White Paper: Heuristic Analysis—Detecting Unknown Viruses

that it could be a variant of Virus X, but they’re not completely sure. This eliminates the

vendor’s risk of false positives, by leaving the fi nal diagnosis and choice of action to the

customer. In reality, most customers would prefer that the diagnosis by made by the scanner.

Users may feel uncomfortable with the possibility that the software could be wrong, which

could suggest that the technology is less reliable than it really is.

Others vendors display a more impressively detailed message that says something like

“XXXX malware detected and blocked”, or “W32/nastybackdoortrojan detected and

removed”. That sounds great, and the customer may be duly grateful that malware has

been identifi ed and neutralized, but may not know initially that these names are simply

generic names that indicate a heuristic detection of possible malware, and not indicative

of a specifi c virus.

Unfortunately, there are no reliable statistics to indicate how many legitimate programs,

emails, etc. have been maligned because of an overconfi dent scanner.

Some vendors advise that advanced heuristics should only be enabled in contexts where

the presence of new malware is suspected or most likely to be found, on email gateway

scanners, for instance. This reduces the confusion caused by the risk of false positives at the

desktop, but increases the risk of false negatives where perimeter scanning fails.

Testing Issues

Testing virus scanners for detection performance has always been a contentious issue,14 and

only a very few testers and testing bodies are recognized as competent in this area by other

members of the AV research community.

The testing organizations generally considered to be competent in this area include:

• AV Comparatives (http://www.av-comparatives.org/)

• AV-Test.org (http://www.av-test.org/)

• ICSA Labs (http://www.icsalabs.com/)

• SC Magazine/West Coast Labs (http://www.westcoastlabs.org/)

• Virus Bulletin (http://www.virusbtn.com/)

• Virus Research Unit, University
of Tampere (http://www.uta.fi /
laitokset/virus)

• Virus Test Center, University of
Hamburg (http://agn-www.
informatik.uni-hamburg.de/vtc/
naveng.htm.)

(Note that the last two organizations have

not been very active in testing recently.)

Unlike testers with no links to the AV

Only a very few testers and
testing bodies are recognized
as highly-profi cient in this
area by other members of the
AV research community.

15

White Paper: Heuristic Analysis—Detecting Unknown Viruses

research community, these organizations are generally trusted by that community –

though not necessarily by all members of that community – to test competently, safely, and

ethically, while remaining independent. This trusted status means they often have access

to authenticated virus samples such as those collected, tested and authenticated by the

WildList International Organization (http://www.wildlist.org/), a group of collaborating

researchers representing most of the major AV vendors and a number of large corporations

and educational institutions.

The AV community argues that most other tests performed by those outside the group of

industry-sanctioned testers are potentially invalid or otherwise inappropriate because:

• Tester competence cannot be assumed, and therefore, neither can:

 - The appropriateness of the testing methodology

 - Adherence to safe practice, industry ethical codes and standards

Because of these issues, members of the AV research community cannot ethically share

samples with untrusted testers. Therefore, the provenance and authenticity of the samples

against which the products are tested cannot be assumed. Often, testers who are unable

to access AV community sample pools try to substitute samples taken from virus exchange

web sites and other (potentially dubious) resources which may contain all sorts of non-

viral samples (garbage fi les, intendeds, corrupted samples and so forth). Some of these

issues can be overcome if the reviewing organization outsources the testing to an accepted

organization. (For instance, AV-Test performs several types of testing for magazine reviews.)

Curiously enough, these diffi culties have contributed to (but not caused) a situation where

testers, concerned about the eff ectiveness of a certain scanner against unknown viruses,

were testing via heuristics even before the technology acquired the heuristic label and

its 21st century capabilities, by generating variants. Unfortunately, this typically involved

the use of unreliable virus generators, irrelevant virus simulators, random placement or

masking of virus code and text strings, and so on.15

Of course, testing the heuristic capabilities of a scanner is a perfectly valid objective

(especially now that scanners have heuristic capabilities).

However, it is as important for such a test to be carried

out competently and safely as it is for testing known virus

detection. In the absence of a competently administered

baseline test set, there is no guarantee that scanners are

being tested against valid, working viruses. Testers whose

competence is already questionable because of lack of

direct interface with the AV research community, create

further diffi culties for themselves, and for those who rely

on their testing, if they don’t publish information on their

testing methodology, especially sample validation.

In the absence of
a competently
administered baseline
test set, there is
no guarantee that
scanners are being
tested against valid,
working viruses.

16

White Paper: Heuristic Analysis—Detecting Unknown Viruses

By validation we mean whether the code under test is actually malicious – i.e. a virus must

have the ability to replicate, worms must be able to spread correctly and so on. Often, when

testers perform tests without such validation it is later discovered that many of the pieces

of code were not malicious, but rather broken or legitimate fi les that were mistakenly used.

In a recent example,16 it was obliquely suggested that the group commissioned to perform

the testing used virus generators. This immediately caused AV researchers to doubt the

testers’ competence, as virus generation kits are notoriously unreliable when it comes to

producing viable viruses. Since they didn’t describe their testing methodology in useful

detail, it wasn’t known how or if they verifi ed their testing samples.

The possibility that some or all samples were non-viral invalidates tests of AV scanners,

if it is assumed the samples were viral. If this is the case, the highest detection rate does

not necessarily equal the best performance, since it could include a large number of false

positives,15 even supposing that all scanners tested were consistently confi gured.

The AV industry is reluctant to condone creation of new malware or viral code, even if just

for testing. There are many reasons for this stance: the adherence of most researchers to

a stringent code of ethics, concern about safety issues when new viruses are handled by

inexperienced testers, validation diffi culties, and so on. That said, it isn’t actually necessary

for anyone to create viruses to test heuristics.

“Retrospective testing” involves testing a scanner that hasn’t been updated for a period

of time (three months is a period commonly chosen), with validated malware that has

appeared since the last update applied to the test-bed scanner. This provides reasonable

assurance that heuristic capability is being tested, not the detection of known viruses by

virus-specifi c algorithms. Such a test by no means lessens the need for competent testing,

but it avoids the ethical and practical diffi culties associated with the creation of new viruses

for testing purposes. However, it doesn’t eliminate the need to validate samples, or to

carefully construct meaningful tests.

Almost all of the major AV vendors provide

daily (or more frequent) detection updates,

so testing a scanner when it’s three months

out of date doesn’t say very much about its

current detection capabilities. A more valid

approach might be to test the capabilities at

diff erent points, or to test with a specifi c virus

to determine the fi rst point at which detection

occurs. Clearly it’s worth noting if a scanner

was capable of detecting malware before it

was known to exist.

“Retrospective testing”
involves testing a scanner
that hasn’t been updated
for a period of time, with
validated malware that
has appeared since the last
update that was applied to
the test-bed scanner.

17

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Conclusion: An Heuristic Paradox
Interestingly, even though heuristic technology is more sophisticated now than it was in

the 1990s, overall detection rates have fallen dramatically, though detection rates for “old

school” malware (macro viruses, mass mailers, and so on) remains impressively high.

While it’s sometimes suggested that this overall

decline is due to the ineff ectiveness of the AV

industry, or its desire to cling to a virus-specifi c

detection model, this isn’t so. A major contributing

factor is the increased sophistication of malware

authors, who have developed a wide range of

approaches to minimizing the susceptibility of their

product to heuristic detection, and who test the

eff ectiveness of these approaches against suitably

updated and confi gured scanners. The problem is

more troublesome now than it was a few years ago, when it was considered (by the vendors,

at least) something of a bonus if an AV product detected anything other than viruses.

Nowadays, viruses (i.e. programs with an identifi able replicative functionality) constitute

a far smaller proportion of all malicious programs.17 In a sense this makes the job of the

heuristic scanner far harder; it’s conceptually simple to detect a virus heuristically if you

can untangle the code enough to determine that it’s intended to replicate, though it isn’t

always technically possible to detect a replicative program. Determining automatically that

a program is a bot, or a Trojan of some sort, or simply that it’s malicious in intent, is a much

greater challenge.5

Take a classic example: a program that reformats a disk is not malicious by defi nition – indeed,

that might be its overt and only function. However, if it’s executed because the computer

user has been duped into believing that it will play a movie or improve Internet access, it’s

reasonable to regard it as malicious. The real problem in such a case lies in establishing an

algorithm which will discriminate on the basis of the user’s understanding of the program’s

purpose and the programmer’s intent, rather than on a programmatic characteristic.

If we can’t establish a reliable heuristic for malice or intent, though, we can apply other

heuristics and assign a score to a program accordingly. A close programmatic resemblance

to known malware is a likely high scorer. There are many other behaviors that can ring

alarm bells, according to context, say for instance, opening an SMTP or IRC channel, or a

fi le transfer mechanism. Analysis of executable fi les can fl ag many coding oddities, such as

suspicious patches and fl ag combinations, inconsistent header characteristics, indications

of size mismatches, and so on. The wider context in which a possibly malicious program

is found can also provide valuable clues as to its nature. Message analysis may indicate

similarities to a known mass mailer or email-borne Trojan, and may even contain useful

information such as the password for an encrypted archive fi le.

Malware authors have
developed a wide
range of approaches
to minimizing the
susceptibility of their
product to heuristic
detection.

18

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Although some scanners have this capability, it might be optimistic to expect a heuristic

scanner to automatically scan for a passphrase, especially in a message with a high

percentage of graphic content. The chances of detecting such a passphrase may be higher

in a message that resembles other malicious messages. Messages carrying malicious

programs or URLs may also resemble other types of malicious messaging traffi c such as

phishes and spams – virus writers and spammers have been borrowing techniques from

each other for many years now; evidence shows a growing confl uence of interest between

these previously disparate groups. Email scanners are often expected to detect these and

other forms of email abuse, as well as pure malware. Traffi c analysis may show patterns

associated with malicious activity, such as mass mailers, botnet-generated spam and scams,

and so forth. For these reasons, gateway scanning for spam (heuristic and otherwise) can

also add considerably to the eff ectiveness of malware detection.

However, it’s by no means certain that we will see the same high percentages of proactive

detections in the foreseeable future that we did in the early days of heuristic scanning,

welcome though that would be, to users and vendors alike. Malware authors have diff erent

priorities. Rather than a scattergun approach (maximum spread of a single variant), now

their focus is frequent but short runs of a given instance of malware, which may be targeted

to specifi c individuals or groups. Even simple changes like a quick-fi re series of modifi ed run-

time packers to change the program’s footprint can reduce detection (heuristic and non-

heuristic), and stretch resources at even the biggest anti-malware laboratories. Forms of

malware that make frequent use of botnet technology to self-update and self-modify once

installed on a compromised machine can be very hard to detect.

There’s no cause for panic, though — we’ve been living with these problems for several years.

And common sense computer hygiene, good patching practices, and frequent anti-malware

updates continue to provide pretty good protection. Not only that, but increasingly

sophisticated virtualization and emulation techniques, coupled with heuristic analysis,

remains a strong and continually improving component of the security vendor’s armory.

However, neither the AV vendors nor the proponents of “fl avor-of–the-month” alternative

technologies can realistically claim to be able to detect all future threats proactively.

The trick is to keep your expectations realistic.

19

White Paper: Heuristic Analysis—Detecting Unknown Viruses

References
1. “A Short Course on Computer Viruses 2nd Edition”, pp 2, 49 (Dr Frederick B Cohen): Wiley,

1994.

2. “VIRUS-L/comp.viru Frequently Asked Questions (FAQ) v2.00” (N. FitzGerald et al., 1995):
http://www.faqs.org/faqs/computer-virus/faq/ (Date of access 12th January 2007)

3. “Analysis and Maintenance of a Clean Virus Library” (Dr. V. Bontchev): http://www.people.
frisk-software.com/~bontchev/papers/virlib.html (Date of access 12th January 2007)

4. “The Anti-Virus or Anti-Malware Test File”: http://www.eicar.org/anti_virus_test_fi le.htm

5. “Trojans” (Harley), in “Maximum Security 4th Edition” (ed. Anonymous): SAMS, 2003

6. Oxford Compact English Dictionary, Oxford University Press: http://www.askoxford.com/
(Date of access 12th January 2007)

7. Merriam-Webster Online: http://www.m-w.com/ (Date of access 12th January 2007)

8. “Viruses Revealed” (Harley, Slade, Gattiker) pp158-159: Osborne 2001

9. “Evolution Discussion Group Fall 1996 Phylogenies and Evolution, Useful Terms” - University
of British Columbia Zoology Department: www.bcu.ubc.ca/~otto/EvolDisc/Glossary.html
(Date of access 12th January 2007)

10. “Virus Proof” (P. Schmauder), page 187: Prima Tech (2000)

11. Dr. Solomon’s Virus Encyclopaedia (Solomon, Gryaznov), pp30-31: S&S International (1995).

12. The Art of Computer Virus Research and Defense (Szor), page 441, pp451-466: Addison-
Wesley (2005).

13. “Heuristic Programming”: http://www.webopedia.com/TERM/h/heuristic_programming.
html (Date of access 12th January 2007)

14. Anti-virus programs: testing and evaluation (Lee): in “The AVIEN Guide to Malware Defense
in the Enterprise” (Ed. Harley): Syngress (2007, in preparation).

15. “AV Testing SANS Virus Creation” (Harley): Virus Bulletin pp6-7, October 2006

16. “Consumer Reports Creating Viruses?” (Sullivan): http://redtape.msnbc.com/2006/08/
consumer_report.html (Date of access 12th January 2006).

17. “Email Threats and Vulnerabilities” (Harley). In “The Handbook of Computer Networks” (Ed.
Bidgoli): Wiley (2007 – in press).

20

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Glossary
Adware Program that performs some action (such as showing a popup screen

or sending a browser to a web site) that brings an advertiser/product
to the attention of the computer user. Often considered a Trojan if
installed without the knowledge or permission of the user.

Almost Exact Recognition of a virus where the identifi cation is only good enough
Identifi cation to ensure an attempt to remove the virus will not result in damage

to the host by using an inappropriate disinfection method. Every
section of the non-modifi able parts of the virus body is not uniquely
identifi ed.

Checksum In this context a checksum is a computed value that is dependent
upon the content of a specifi c fi le. If the content of that fi le changes,
the checksum will change. (Some checksumming methods are prone
to collisions – i.e. a fi le may be produced that has the same checksum
as another, but in the majority of cases applied to a single fi le, a
change in that fi le will aff ect the calculated checksum – this is enough
for most purposes of integrity/change checking.)

Corruption Damage causing altered or impaired function, or non-viability (in this
context specifi cally to a virus).

DDoS Distributed Denial of Service attack. Characteristically, a remote
attacker uses zombie or agent software maliciously installed on a
network of machines to attack other systems in such a way that their
functionality is impaired.

Destructive Trojan Trojan that causes (usually deliberate) direct damage, as opposed to
something less damaging, such as stealing passwords or other data.

Dropper Program (usually non-viral) that installs another malicious program
such as a worm or virus.

EICAR test fi le Uniquely formatted program fi le, which most AV programs recognize
as a test program, and respond to in a very similar way to that in
which they respond to viruses.

 The EICAR fi le is not a virus and presents no malicious threat: if
executed, it simply displays a screen identifying itself as a test fi le.

Exact Identifi cation Recognition of a virus when every section of the non-modifi able parts
of the virus body is uniquely identifi ed.

False Negative Describes the scenario where an anti-malware scanner fails to detect
actual malware.

False Positive Describes the scenario where an anti-malware scanner incorrectly
detects malware where there is none.

Garbage fi les In AV research this fi le is not a malicious program, but included in
badly maintained malware collections as if it were.

21

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Generic Describes security programs that don’t recognize specifi c threats, but
defend using a method that blocks a whole class (or classes) of threats.

 A generic signature is a special case of this; a whole set of variants are
detected and processed by a single signature rather than by individual
signatures for each variant.

 Antonym of “virus specifi c.”

Germ A “generation zero” virus that hasn’t yet infected anything (e.g. a fi le
that consists only of virus code, rather than an infected binary).

Heuristic detection/ Recognition of an object that has enough viral or malicious
scanning characteristics to suggest that it is probably a virus or other malware.

Intendeds Viruses (or, less often, other malicious programs) that don’t work for
one reason or another, often because of insuffi cient testing by the
author.

Joke program Program that performs some unexpected act which may be annoying,
but isn’t actually destructive. The line between a joke and a Trojan can
be very tenuous.

Keyloggers A program that monitors keystrokes, often installed for malicious or
criminal purposes such as password theft.

Known Virus Scanning for known viruses resulting in the identifi cation by name of a
Scanning, Virus- virus found in the scanned environment.
Specifi c Scanning

Negative heuristic A rule or criterion, which if met lessens the likelihood that the object
being analyzed is not viral or malicious.

Passphrase As opposed to a password which is usually a single ‘word’ or string, a
passphrase is usually a longer group of words which is used as a more
secure form of password.

Positive heuristic A rule or criterion, which if met increases the likelihood that the
program being analyzed is viral or malicious.

Retrospective testing A technique for testing the heuristic capabilities of a scanner or
scanners by not updating it for a set period of time, then using it to
scan malware that has appeared subsequent to the last update.

Rootkit A program or suite of programs installed covertly in order to allow
unauthorized, privileged access to a system.

 Sometimes the term stealthkit is used, though this can denote
unauthorized but unprivileged access.

 [See “The Root of All Evil? Rootkits Revealed” by David Harley & Andrew
Lee - http://www.eset.com/download/whitepapers.php]

Scan String, Search A sequence of bytes found in a known virus that shouldn’t be found
String in a legitimate program. The term is not restricted to static search

strings, and may include wildcards and regular expressions, or the use
of another virus-specifi c detection algorithm.

 Also sometimes known as “scan signature”.

Self launching Term used to describe malicious software that doesn’t require any
action on the part of the victim to spread or trigger, or both.

22

White Paper: Heuristic Analysis—Detecting Unknown Viruses

Signature Synonym for “scan string”. May be applied to a static search string, but best
avoided altogether, particularly as it often misleads people into thinking
there is a single byte sequence used by all virus scanners to recognize each
virus or variant.

Spyware Program that covertly gathers information about the computer user and
passes it on to an interested party.

 Includes some forms of adware.

Virus generator Program that is not itself a virus, but generates viruses.
program May also be referred to as a “virus kit”.

Virus-specifi c Detection of known viruses using search strings specifi c to those viruses or
detection variants.

Wildcard Character that can be used to represent another character or sequence of
bytes, or indicates the use of a specialized form of regular expression.

Zombie Backdoor program on a compromised PC that waits for and acts upon
instructions from a remote machine, or the compromised PC itself.

© 2009 ESET, LLC. All rights reserved. ESET, the ESET Logo, ESET SMART SECURITY, ESET.COM, ESET.EU, NOD32, VIRUS RADAR, THREATSENSE,
THREAT RADAR, and THREATSENSE.NET are trademarks, service marks and/or registered trademarks of ESET, LLC and/or ESET, spol. s r.o. in the
United States and certain other jurisdictions. All other trademarks and service marks that appear in these pages are the property of their respective
owners and are used solely to refer to those companies’ goods and services.

Corporate Headquarters

ESET, spol. s r.o.
Aupark Tower
16th Floor
Einsteinova 24
851 01 Bratislava
Slovak Republic
Tel. +421 (2) 59305311
www.eset.sk

Americas & Global Distribution

ESET, LLC.
610 West Ash Street
Suite 1900
San Diego, CA 92101
U.S.A.
Toll Free: +1 (866) 343-3738
Tel. +1 (619) 876-5400
Fax. +1 (619) 876-5845
www.eset.com

2008

honoree

HA20081203

